Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Traebert, M; Köhler, K; Lambert, G; Biber, J; Forster, I C; Murer, H (2001). Investigating the surface expression of the renal type IIa Na+/Pi-cotransporter in Xenopus laevis oocytes. Journal of Membrane Biology, 180(1):83-90.

Full text not available from this repository.

View at publisher


We have combined a functional assay, surface labeling and immunocytochemical methods to compare total and surface-exposed renal type IIa Na+/Pi cotransporter protein. The wild-type type cotransporter (NaPi-IIa) and its functionally comparable cysteine mutant S460C were expressed in Xenopus oocytes. S460C contains a novel cysteine residue that, when modified by preincubation with methanethiosulfonate reagents, leads to complete suppression of cotransport function. This allowed surface labeling of the S460C using MTSEA-Biotin and confirmation by electrophysiology on the same cell. Protein was analyzed by Western blotting before and after streptavidin precipitation and by immunocytochemistry and immunogold electronmicroscopy. MTSEA-Biotin treatment resulted in a complete inhibition of S460C-mediated Na+/Pi-cotransport activity, which indicated that all transporters at the surface were biotinylated. After biotinylation, only a small fraction of total S460C protein was precipitated by streptavidin compared with the total amount of S460C protein detected in the lysate. Light- and electron-microscopy analysis of oocytes showed a large amount of WT and S460C transporter protein beneath the oocyte membrane. These data indicate that the apparent weak labeling efficiencies of surface-biotinylation-based assays of membrane proteins heterologously expressed in oocytes can be related to diminished incorporation of the protein in the oolemma.


6 citations in Web of Science®
5 citations in Scopus®
Google Scholar™


Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology
Dewey Decimal Classification:570 Life sciences; biology
Date:1 March 2001
Deposited On:11 Feb 2008 12:23
Last Modified:05 Apr 2016 12:18
Publisher DOI:10.1007/s002320010059
PubMed ID:11284206

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page