UZH-Logo

Evaluation of temporal windows for coronary artery bypass graft imaging with 64-slice CT


Desbiolles, L; Leschka, S; Plass, A; Scheffel, H; Husmann, L; Gaemperli, O; Garzoli, E; Marincek, B; Kaufmann, P A; Alkadhi, H (2007). Evaluation of temporal windows for coronary artery bypass graft imaging with 64-slice CT. European Radiology, 17(11):2819-2828.

Abstract

Temporal windows providing the best image quality of different segments and types of coronary artery bypass grafts (CABGs) with 64-slice computed tomography (CT) were evaluated in an experimental set-up. Sixty-four-slice CT with a rotation time of 330 ms was performed in 25 patients (four female; mean age 59.9 years). A total of 84 CABGs (62 individual and 22 sequential grafts) were evaluated, including 28 internal mammary artery (33.3%), one radial artery with sequential grafting (2.4%), and 54 saphenous vein grafts (64.3%). Ten data sets were reconstructed in 10% increments of the RR-interval. Each graft was separated into segments (proximal and distal anastomosis, and body), and CABG types were grouped according to target arteries. Two readers independently assessed image quality of each CABG segment in each temporal window. Diagnostic image quality was found with good inter-observer agreement (kappa=0.62) in 98.5% (202/205) of all graft segments. Image quality was significantly better for saphenous vein grafts versus arterial grafts (P<0.001) and for distal anastomosis to the right coronary compared with other target coronary arteries (P<0.05). Overall, best image quality was found at 60%. Image quality of proximal segments did not significantly vary with the temporal window, whereas for all other segments image quality was significantly better at 60% compared with other temporal windows (P<0.05). Sixty-four-slice CT provides best image quality of various segments and types of CABG at 60% of the RR-interval.

Temporal windows providing the best image quality of different segments and types of coronary artery bypass grafts (CABGs) with 64-slice computed tomography (CT) were evaluated in an experimental set-up. Sixty-four-slice CT with a rotation time of 330 ms was performed in 25 patients (four female; mean age 59.9 years). A total of 84 CABGs (62 individual and 22 sequential grafts) were evaluated, including 28 internal mammary artery (33.3%), one radial artery with sequential grafting (2.4%), and 54 saphenous vein grafts (64.3%). Ten data sets were reconstructed in 10% increments of the RR-interval. Each graft was separated into segments (proximal and distal anastomosis, and body), and CABG types were grouped according to target arteries. Two readers independently assessed image quality of each CABG segment in each temporal window. Diagnostic image quality was found with good inter-observer agreement (kappa=0.62) in 98.5% (202/205) of all graft segments. Image quality was significantly better for saphenous vein grafts versus arterial grafts (P<0.001) and for distal anastomosis to the right coronary compared with other target coronary arteries (P<0.05). Overall, best image quality was found at 60%. Image quality of proximal segments did not significantly vary with the temporal window, whereas for all other segments image quality was significantly better at 60% compared with other temporal windows (P<0.05). Sixty-four-slice CT provides best image quality of various segments and types of CABG at 60% of the RR-interval.

Citations

14 citations in Web of Science®
14 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 18 Mar 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Nuclear Medicine
04 Faculty of Medicine > Center for Integrative Human Physiology
04 Faculty of Medicine > University Hospital Zurich > Clinic for Diagnostic and Interventional Radiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:November 2007
Deposited On:18 Mar 2009 08:12
Last Modified:05 Apr 2016 13:02
Publisher:Springer
ISSN:0938-7994
Additional Information:The original publication is available at www.springerlink.com
Publisher DOI:10.1007/s00330-007-0693-z
PubMed ID:17639408
Permanent URL: http://doi.org/10.5167/uzh-14184

Download

[img]Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations