UZH-Logo

Betacellulin regulates hair follicle development and hair cycle induction and enhances angiogenesis in wounded skin


Schneider, M R; Antsiferova, M; Feldmeyer, L; Dahlhoff, M; Bugnon, P; Hasse, S; Paus, R; Wolf, E; Werner, S (2008). Betacellulin regulates hair follicle development and hair cycle induction and enhances angiogenesis in wounded skin. Journal of Investigative Dermatology, 128(5):1256-1265.

Abstract

Betacellulin (BTC) belongs to the EGF family, whose members play important roles in skin morphogenesis, homeostasis, and repair. However, the role of BTC in skin biology is still unknown. We employed transgenic mice overexpressing BTC ubiquitously to study its role in skin physiology. Immunohistochemistry revealed increased levels of BTC especially in the hair follicles and in the epidermis of transgenic animals. Expression of key markers of epithelial differentiation was unaltered, but keratinocyte proliferation was significantly increased. At post-natal day 1 (P1), transgenic mice displayed a significant retardation of hair follicle morphogenesis. At P17, when most follicles in control mice had initiated hair follicle cycling and had already entered into their first late catagen or telogen phase, all follicles of transgenic mice were still at the mid- to late catagen phases, indicating retarded initiation of hair follicle cycling. Healing of full-thickness excisional wounds and bursting strength of incisional wounds were similar in control and transgenic mice. However, an increase in the area covered by blood vessels at the wound site was detected in transgenic animals. These results provide evidence for a role of BTC in the regulation of epidermal homeostasis, hair follicle morphogenesis and cycling, and wound angiogenesis.

Betacellulin (BTC) belongs to the EGF family, whose members play important roles in skin morphogenesis, homeostasis, and repair. However, the role of BTC in skin biology is still unknown. We employed transgenic mice overexpressing BTC ubiquitously to study its role in skin physiology. Immunohistochemistry revealed increased levels of BTC especially in the hair follicles and in the epidermis of transgenic animals. Expression of key markers of epithelial differentiation was unaltered, but keratinocyte proliferation was significantly increased. At post-natal day 1 (P1), transgenic mice displayed a significant retardation of hair follicle morphogenesis. At P17, when most follicles in control mice had initiated hair follicle cycling and had already entered into their first late catagen or telogen phase, all follicles of transgenic mice were still at the mid- to late catagen phases, indicating retarded initiation of hair follicle cycling. Healing of full-thickness excisional wounds and bursting strength of incisional wounds were similar in control and transgenic mice. However, an increase in the area covered by blood vessels at the wound site was detected in transgenic animals. These results provide evidence for a role of BTC in the regulation of epidermal homeostasis, hair follicle morphogenesis and cycling, and wound angiogenesis.

Citations

21 citations in Web of Science®
23 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 19 Feb 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Dermatology Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:May 2008
Deposited On:19 Feb 2009 10:03
Last Modified:05 Apr 2016 13:02
Publisher:Nature Publishing Group
ISSN:0022-202X
Publisher DOI:10.1038/sj.jid.5701135
PubMed ID:17960175
Permanent URL: http://doi.org/10.5167/uzh-14197

Download

[img]
Filetype: PDF - Registered users only
Size: 5MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations