Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-14215

Schepis, T; Gaemperli, O; Treyer, V; Valenta, I; Burger, C; Koepfli, P; Namdar, M; Adachi, I; Alkadhi, H; Kaufmann, P A (2007). Absolute quantification of myocardial blood flow with 13N-ammonia and 3-dimensional PET. Journal of Nuclear Medicine, 48(11):1783-1789.

[img] PDF - Registered users only
View at publisher


The aim of this study was to compare 2-dimensional (2D) and 3-dimensional (3D) dynamic PET for the absolute quantification of myocardial blood flow (MBF) with (13)N-ammonia ((13)N-NH(3)). METHODS: 2D and 3D MBF measurements were collected from 21 patients undergoing cardiac evaluation at rest (n = 14) and during standard adenosine stress (n = 7). A lutetium yttrium oxyorthosilicate-based PET/CT system with retractable septa, enabling the sequential acquisition of 2D and 3D images within the same patient and study, was used. All 2D studies were performed by injecting 700-900 MBq of (13)N-NH(3). For 14 patients, 3D studies were performed with the same injected (13)N-NH(3) dose as that used in 2D studies. For the remaining 7 patients, 3D images were acquired with a lower dose of (13)N-NH(3), that is, 500 MBq. 2D images reconstructed by use of filtered backprojection (FBP) provided the reference standard for MBF measurements. 3D images were reconstructed by use of Fourier rebinning (FORE) with FBP (FORE-FBP), FORE with ordered-subsets expectation maximization (FORE-OSEM), and a reprojection algorithm (RP). RESULTS: Global MBF measurements derived from 3D PET with FORE-FBP (r = 0.97), FORE-OSEM (r = 0.97), and RP (r = 0.97) were well correlated with those derived from 2D FBP (all Ps < 0.0001). The mean +/- SD differences in global MBF measurements between 3D FORE-FBP and 2D FBP and between 3D FORE-OSEM and 2D FBP were 0.01 +/- 0.14 and 0.01 +/- 0.15 mL/min/g, respectively. The mean +/- SD difference in global MBF measurements between 3D RP and 2D FBP was 0.00 +/- 0.16 mL/min/g. The best correlation between 2D PET and 3D PET performed with the lower injected activity was found for the 3D FORE-FBP reconstruction algorithm (r = 0.95, P < 0.001). CONCLUSION: For this scanner type, quantitative measurements of MBF with 3D PET and (13)N-NH(3) were in excellent agreement with those obtained with the 2D technique, even when a lower activity was injected.


26 citations in Web of Science®
29 citations in Scopus®
Google Scholar™



1 download since deposited on 18 Mar 2009
0 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Nuclear Medicine
04 Faculty of Medicine > Center for Integrative Human Physiology
04 Faculty of Medicine > University Hospital Zurich > Clinic for Diagnostic and Interventional Radiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Date:November 2007
Deposited On:18 Mar 2009 08:28
Last Modified:05 Apr 2016 13:02
Publisher:Society of Nuclear Medicine
Publisher DOI:10.2967/jnumed.107.044099
PubMed ID:17942816

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page