Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive

Bacconi, A; Virkki, L V; Biber, J; Murer, H; Forster, I C (2005). Renouncing electroneutrality is not free of charge: switching on electrogenicity in a Na+-coupled phosphate cotransporter. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 102(35):12606-12611.

Full text not available from this repository.

View at publisher

Abstract

Renal type IIa Na+-coupled inorganic phosphate (Pi) cotransporters (NaPi-IIa) mediate divalent Pi transport in an electrogenic manner, whereas the renal type IIc isoform (NaPi-IIc) is electroneutral, yet it shows high sequence identity with NaPi-IIa. Dual uptake (32Pi/22Na) assays confirmed that NaPi-IIc displayed Na+-coupled Pi cotransport with a 2:1 (Na+:Pi) stoichiometry compared with 3:1 established for NaPi-IIa. This finding suggested that the electrogenicity of NaPi-IIa arises from the interaction of an additional Na+ ion compared with NaPi-IIc. To identify the molecular elements responsible for the functional difference between isoforms, we used chimera and amino acid replacement approaches. Transport activity of chimeras constructed with NaPi-IIa and NaPi-IIc indicated that residues within the first six transmembrane domains were essential for the electrogenicity of NaPi-IIa. Sequence comparison between electrogenic and electroneutral isoforms revealed differences in the charge and polarity of residues clustered in three areas, one of which included part of the predicted third transmembrane domain. Here, substitution of three residues with their NaPi-IIa equivalents in NaPi-IIc (S189A, S191A, and G195D) resulted in a transporter that displayed a 1:1 charge/Pi coupling, a 3:1 Na+:Pi stoichiometry, and transient currents that resembled pre-steady-state relaxations. The mutant's weaker voltage dependency and 10-fold lower apparent Pi affinity compared with NaPi-IIa indicated that other residues important for the NaPi-IIa kinetic fingerprint exist. Our findings demonstrate that, through a minimal number of side chain substitutions, we can effect a switch from electroneutral to electrogenic cotransporter function, concomitant with the appearance of a cosubstrate interaction site.

Citations

37 citations in Web of Science®
38 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology
DDC:570 Life sciences; biology
Language:English
Date:30 August 2005
Deposited On:11 Feb 2008 12:23
Last Modified:28 Nov 2013 01:55
Publisher:National Academy of Sciences
ISSN:0027-8424
Publisher DOI:10.1073/pnas.0505882102
PubMed ID:16113079

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page