UZH-Logo

Mammalian PASKIN, a PAS-serine/threonine kinase related to bacterial oxygen sensors.


Hofer, T; Spielmann, P; Stengel, P; Stier, B; Katschinski, D M; Desbaillets, I; Gassmann, M; Wenger, R H (2001). Mammalian PASKIN, a PAS-serine/threonine kinase related to bacterial oxygen sensors. Biochemical and Biophysical Research Communications (BBRC), 288(4):757-764.

Abstract

The PAS domain is a versatile protein fold found in many archaeal, bacterial, and plant proteins capable of sensing environmental changes in light intensity, oxygen concentration, and redox potentials. The oxygen sensor FixL from Rhizobium species contains a heme-bearing PAS domain and a histidine kinase domain that couples sensing to signaling. We identified a novel mammalian PAS protein (PASKIN) containing a domain architecture resembling FixL. PASKIN is encoded by an evolutionarily conserved single-copy gene which is ubiquitously expressed. The human PASKIN and mouse Paskin genes show a conserved intron-exon structure and share their promoter regions with another ubiquitously expressed gene that encodes a regulator of protein phosphatase-1. The 144-kDa PASKIN protein contains a PAS region homologous to the FixL PAS domain and a serine/threonine kinase domain which might be involved in signaling. Thus, PASKIN is likely to function as a mammalian PAS sensor protein.

The PAS domain is a versatile protein fold found in many archaeal, bacterial, and plant proteins capable of sensing environmental changes in light intensity, oxygen concentration, and redox potentials. The oxygen sensor FixL from Rhizobium species contains a heme-bearing PAS domain and a histidine kinase domain that couples sensing to signaling. We identified a novel mammalian PAS protein (PASKIN) containing a domain architecture resembling FixL. PASKIN is encoded by an evolutionarily conserved single-copy gene which is ubiquitously expressed. The human PASKIN and mouse Paskin genes show a conserved intron-exon structure and share their promoter regions with another ubiquitously expressed gene that encodes a regulator of protein phosphatase-1. The 144-kDa PASKIN protein contains a PAS region homologous to the FixL PAS domain and a serine/threonine kinase domain which might be involved in signaling. Thus, PASKIN is likely to function as a mammalian PAS sensor protein.

Citations

23 citations in Web of Science®
24 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

135 downloads since deposited on 11 Feb 2008
49 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2001
Deposited On:11 Feb 2008 12:23
Last Modified:05 Apr 2016 12:18
Publisher:Elsevier
ISSN:0006-291X
Publisher DOI:10.1006/bbrc.2001.5840
PubMed ID:11688972
Permanent URL: http://doi.org/10.5167/uzh-1428

Download

[img]
Preview
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations