UZH-Logo

Enhanced suicidal death of erythrocytes from gene-targeted mice lacking the Cl-/HCO(3)(-) exchanger AE1


Akel, A; Wagner, C A; Kovacikova, J; Kasinathan, R S; Kiedaisch, V; Koka, S; Alper, S L; Bernhardt, I; Wieder, T; Huber, S M; Lang, F (2007). Enhanced suicidal death of erythrocytes from gene-targeted mice lacking the Cl-/HCO(3)(-) exchanger AE1. American Journal of Physiology. Cell Physiology, 292(5):C1759-C1767.

Abstract

Genetic defects of anion exchanger 1 (AE1) may lead to spherocytic erythrocyte morphology, severe hemolytic anemia, and/or cation leak. In normal erythrocytes, osmotic shock, Cl(-) removal, and energy depletion activate Ca(2+)-permeable cation channels with Ca(2+)-induced suicidal erythrocyte death, i.e., surface exposure of phosphatidylserine, cell shrinkage, and membrane blebbing, all features typical for apoptosis of nucleated cells. The present experiments explored whether AE1 deficiency favors suicidal erythrocyte death. Peripheral blood erythrocyte numbers were significantly smaller in gene-targeted mice lacking AE1 (AE1(-/-) mice) than in their wild-type littermates (AE1(+/+) mice) despite increased percentages of reticulocytes (AE1(-/-): 49%, AE1(+/+): 2%), an indicator of enhanced erythropoiesis. Annexin binding, reflecting phosphatidylserine exposure, was significantly larger in AE1(-/-)erythrocytes/reticulocytes (approximately 10%) than in AE1(+/+) erythrocytes (approximately 1%). Osmotic shock (addition of 400 mM sucrose), Cl(-) removal (replacement with gluconate), or energy depletion (removal of glucose) led to significantly stronger annexin binding in AE1(-/-) erythrocytes/reticulocytes than in AE1(+/+) erythrocytes. The increase of annexin binding following exposure to the Ca(2+) ionophore ionomycin (1 muM) was, however, similar in AE1(-/-) and in AE1(+/+) erythrocytes. Fluo3 fluorescence revealed markedly increased cytosolic Ca(2+) permeability in AE1(-/-) erythrocytes/reticulocytes. Clearance of carboxyfluorescein diacetate succinimidyl ester-labeled erythrocytes/reticulocytes from circulating blood was more rapid in AE1(-/-) mice than in AE1(+/+) mice and was accelerated by ionomycin treatment in both genotypes. In conclusion, lack of AE1 is associated with enhanced Ca(2+) entry and subsequent scrambling of cell membrane phospholipids.

Genetic defects of anion exchanger 1 (AE1) may lead to spherocytic erythrocyte morphology, severe hemolytic anemia, and/or cation leak. In normal erythrocytes, osmotic shock, Cl(-) removal, and energy depletion activate Ca(2+)-permeable cation channels with Ca(2+)-induced suicidal erythrocyte death, i.e., surface exposure of phosphatidylserine, cell shrinkage, and membrane blebbing, all features typical for apoptosis of nucleated cells. The present experiments explored whether AE1 deficiency favors suicidal erythrocyte death. Peripheral blood erythrocyte numbers were significantly smaller in gene-targeted mice lacking AE1 (AE1(-/-) mice) than in their wild-type littermates (AE1(+/+) mice) despite increased percentages of reticulocytes (AE1(-/-): 49%, AE1(+/+): 2%), an indicator of enhanced erythropoiesis. Annexin binding, reflecting phosphatidylserine exposure, was significantly larger in AE1(-/-)erythrocytes/reticulocytes (approximately 10%) than in AE1(+/+) erythrocytes (approximately 1%). Osmotic shock (addition of 400 mM sucrose), Cl(-) removal (replacement with gluconate), or energy depletion (removal of glucose) led to significantly stronger annexin binding in AE1(-/-) erythrocytes/reticulocytes than in AE1(+/+) erythrocytes. The increase of annexin binding following exposure to the Ca(2+) ionophore ionomycin (1 muM) was, however, similar in AE1(-/-) and in AE1(+/+) erythrocytes. Fluo3 fluorescence revealed markedly increased cytosolic Ca(2+) permeability in AE1(-/-) erythrocytes/reticulocytes. Clearance of carboxyfluorescein diacetate succinimidyl ester-labeled erythrocytes/reticulocytes from circulating blood was more rapid in AE1(-/-) mice than in AE1(+/+) mice and was accelerated by ionomycin treatment in both genotypes. In conclusion, lack of AE1 is associated with enhanced Ca(2+) entry and subsequent scrambling of cell membrane phospholipids.

Citations

12 citations in Web of Science®
14 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

133 downloads since deposited on 20 Mar 2009
42 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Integrative Human Physiology
04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:May 2007
Deposited On:20 Mar 2009 15:55
Last Modified:05 Apr 2016 13:03
Publisher:American Physiological Society
ISSN:0363-6143
Publisher DOI:10.1152/ajpcell.00158.2006
Official URL:http://ajpcell.physiology.org/cgi/reprint/292/5/C1759
PubMed ID:17251326
Permanent URL: http://doi.org/10.5167/uzh-14319

Download

[img]
Preview
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations