UZH-Logo

P-selectin mediates metastatic progression through binding to sulfatides on tumor cells.


Garcia, J; Callewaert, N; Borsig, L (2007). P-selectin mediates metastatic progression through binding to sulfatides on tumor cells. Glycobiology, 17(2):185-196.

Abstract

Hematogenous carcinoma metastasis is associated with tumor cell emboli formation, which is now known to be facilitated by selectins. P-selectin-mediated interactions of platelets with cancer cells are based mostly on mucin- and glycosaminoglycan-type selectin ligands. We previously showed that mouse colon carcinoma cells (MC-38) carry P-selectin ligands of nonmucin origin, which were not identified. Here we show that P-selectin ligands recognized on MC-38 cells are sulfated glycolipids, thereby facilitating experimental metastasis in a syngeneic mouse model. Metabolic inhibition of sulfation by incubation of cells with sodium chlorate almost completely abrogated P-selectin binding. Metabolic labeling of MC-38 cells with (35)S sulfate revealed only a single band as detected by high-performance thin layer chromatography analysis of a total lipid extract. Matrix-assisted laser desorption/ionization tandem time-of-flight/time-of-flight analysis (MALDI-TOF-TOF) analysis of the purified sulfate-containing lipid fraction identified the selectin ligand to be a sulfated galactosylceramide SM4 (HSO(3)-3Galbeta-1Cer). Modulation of glycolipid biosynthesis in MC-38 cells altered P-selectin binding, thereby confirming sulfoglycolipids to be major P-selectin ligands. In addition, P-selectin was also found to recognize lactosylceramide sulfate SM3 (HSO(3)-3Galbeta-4Glcbeta-1Cer) and gangliotriaosylceramide sulfate SM2 [GalNAcbeta-4(HSO(3)-3)Galbeta-4Glcbeta-1Cer] in human hepatoma cells. Finally, the enzymatic removal of sulfation from the cell surface of MC-38 cells resulted in decreased P-selectin binding and led to attenuation of metastasis. Thus, SM4 sulfatide serves as a native ligand for P-selectin contributing to cell-cell interactions and to facilitation of metastasis.

Hematogenous carcinoma metastasis is associated with tumor cell emboli formation, which is now known to be facilitated by selectins. P-selectin-mediated interactions of platelets with cancer cells are based mostly on mucin- and glycosaminoglycan-type selectin ligands. We previously showed that mouse colon carcinoma cells (MC-38) carry P-selectin ligands of nonmucin origin, which were not identified. Here we show that P-selectin ligands recognized on MC-38 cells are sulfated glycolipids, thereby facilitating experimental metastasis in a syngeneic mouse model. Metabolic inhibition of sulfation by incubation of cells with sodium chlorate almost completely abrogated P-selectin binding. Metabolic labeling of MC-38 cells with (35)S sulfate revealed only a single band as detected by high-performance thin layer chromatography analysis of a total lipid extract. Matrix-assisted laser desorption/ionization tandem time-of-flight/time-of-flight analysis (MALDI-TOF-TOF) analysis of the purified sulfate-containing lipid fraction identified the selectin ligand to be a sulfated galactosylceramide SM4 (HSO(3)-3Galbeta-1Cer). Modulation of glycolipid biosynthesis in MC-38 cells altered P-selectin binding, thereby confirming sulfoglycolipids to be major P-selectin ligands. In addition, P-selectin was also found to recognize lactosylceramide sulfate SM3 (HSO(3)-3Galbeta-4Glcbeta-1Cer) and gangliotriaosylceramide sulfate SM2 [GalNAcbeta-4(HSO(3)-3)Galbeta-4Glcbeta-1Cer] in human hepatoma cells. Finally, the enzymatic removal of sulfation from the cell surface of MC-38 cells resulted in decreased P-selectin binding and led to attenuation of metastasis. Thus, SM4 sulfatide serves as a native ligand for P-selectin contributing to cell-cell interactions and to facilitation of metastasis.

Citations

38 citations in Web of Science®
40 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 18 Mar 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Integrative Human Physiology
04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:February 2007
Deposited On:18 Mar 2009 15:40
Last Modified:05 Apr 2016 13:03
Publisher:Oxford University Press
ISSN:0959-6658
Publisher DOI:10.1093/glycob/cwl059
PubMed ID:17043066
Permanent URL: http://doi.org/10.5167/uzh-14334

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations