UZH-Logo

Epolones induce erythropoietin expression via hypoxia-inducible factor-1 alpha activation


Wanner, R M; Spielmann, P; Stroka, D M; Camenisch, G; Camenisch, I; Scheid, A; Houck, D R; Bauer, C; Gassmann, M; Wenger, R H (2000). Epolones induce erythropoietin expression via hypoxia-inducible factor-1 alpha activation. Blood, 96(4):1558-1565.

Abstract

Induction of erythropoietin (Epo) expression under hypoxic conditions is mediated by the heterodimeric hypoxia-inducible factor (HIF)-1. Following binding to the 3' hypoxia-response element (HRE) of the Epo gene, HIF-1 markedly enhances Epo transcription. To facilitate the search for HIF-1 (ant)agonists, a hypoxia-reporter cell line (termed HRCHO5) was constructed containing a stably integrated luciferase gene under the control of triplicated heterologous HREs. Among various agents tested, we identified a class of substances called epolones, which induced HRE-dependent reporter gene activity in HRCHO5 cells. Epolones are fungal products known to induce Epo expression in hepatoma cells. We found that epolones (optimal concentration 4-8 micromol/L) potently induce HIF-1 alpha protein accumulation and nuclear translocation as well as HIF-1 DNA binding and reporter gene transactivation. Interestingly, the activity of a compound related to the fungal epolones, ciclopirox olamine (CPX), was blocked after addition of ferrous iron. This suggests that CPX might interfere with the putative heme oxygen sensor, as has been proposed for the iron chelator deferoxamine mesylate (DFX). However, about 10-fold higher concentrations of DFX (50-100 micromol/L) than CPX were required to maximally induce reporter gene activity in HRCHO5 cells. Moreover, structural, functional, and spectrophotometric data imply a chelator:iron stoichiometry of 1:1 for DFX but 3:1 for CPX. Because the iron concentration in the cell culture medium was determined to be 16 micromol/L, DFX but not CPX function can be explained by complete chelation of medium iron. These results suggest that the lipophilic epolones might induce HIF-1 alpha by intracellular iron chelation. (Blood. 2000;96:1558-1565)

Induction of erythropoietin (Epo) expression under hypoxic conditions is mediated by the heterodimeric hypoxia-inducible factor (HIF)-1. Following binding to the 3' hypoxia-response element (HRE) of the Epo gene, HIF-1 markedly enhances Epo transcription. To facilitate the search for HIF-1 (ant)agonists, a hypoxia-reporter cell line (termed HRCHO5) was constructed containing a stably integrated luciferase gene under the control of triplicated heterologous HREs. Among various agents tested, we identified a class of substances called epolones, which induced HRE-dependent reporter gene activity in HRCHO5 cells. Epolones are fungal products known to induce Epo expression in hepatoma cells. We found that epolones (optimal concentration 4-8 micromol/L) potently induce HIF-1 alpha protein accumulation and nuclear translocation as well as HIF-1 DNA binding and reporter gene transactivation. Interestingly, the activity of a compound related to the fungal epolones, ciclopirox olamine (CPX), was blocked after addition of ferrous iron. This suggests that CPX might interfere with the putative heme oxygen sensor, as has been proposed for the iron chelator deferoxamine mesylate (DFX). However, about 10-fold higher concentrations of DFX (50-100 micromol/L) than CPX were required to maximally induce reporter gene activity in HRCHO5 cells. Moreover, structural, functional, and spectrophotometric data imply a chelator:iron stoichiometry of 1:1 for DFX but 3:1 for CPX. Because the iron concentration in the cell culture medium was determined to be 16 micromol/L, DFX but not CPX function can be explained by complete chelation of medium iron. These results suggest that the lipophilic epolones might induce HIF-1 alpha by intracellular iron chelation. (Blood. 2000;96:1558-1565)

Citations

68 citations in Web of Science®
69 citations in Scopus®
Google Scholar™

Downloads

171 downloads since deposited on 11 Feb 2008
29 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2000
Deposited On:11 Feb 2008 12:23
Last Modified:05 Apr 2016 12:18
Publisher:American Society of Hematology
ISSN:0006-4971
Additional Information:This research was originally published in Blood, 2000; 96(4):1558-65. Copyright by the American Society of Hematology
Related URLs:http://bloodjournal.hematologylibrary.org/cgi/content/abstract/96/4/1558
PubMed ID:10942406
Permanent URL: http://doi.org/10.5167/uzh-1434

Download

[img]
Preview
Filetype: PDF
Size: 1MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations