Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-14347

Frietsch, T; Gassmann, M; Groth, G; Waschke, K F; Vogel, J; Cabrales, P; Vajkoczi, P; Dorn-Beineke, A; Intaglietta, M; Kerger, H (2007). Excessive erythrocytosis does not elevate capillary oxygen delivery in subcutaneous mouse tissue. Microcirculation, 14(2):111-123.

[img]PDF - Registered users only
4Mb

Abstract

OBJECTIVE: Acclimatization to reduced environmental oxygen includes erythropoietin-regulated increase in erythrocytes enhancing the blood's oxygen content. However, increased hematocrit levels result in elevated blood viscosity that might impair microcirculation and tissue oxygenation. To assess this oxygen supply to the skin, the authors used erythropoietin overexpressing transgenic mice (tg6) that develop excessive erythrocytosis in an oxygen-independent manner. These animals have been previously reported to elevate their blood viscosity 4-fold. METHODS: The partial oxygen pressure (pO2) distribution was evaluated in microvessels as well as in subcutaneous interstitial tissue within a dorsal skinfold chamber of resting conscious mice using automated phosphorescence quenching. RESULTS: Compared to wildtype (wt) animals, transgenic blood viscosity increased 4-fold but microvessel diameter was not altered. Despite sharing similar blood pO2 as the wt siblings, tg6 animals nearly doubled their oxygen content. Moreover, tg6 erythrocytes reduced hemoglobin's oxygen affinity by decreased 2,3-DPG levels and an increased Hill number. Transgenic arterioles and venules showed increased pO2 compared to wt controls whereas capillary and tissue pO2 were not altered. CONCLUSIONS: Excessive erythrocytosis does not elevate capillary oxygen delivery.

Item Type:Journal Article, not refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Veterinary Physiology
04 Faculty of Medicine > Center for Integrative Human Physiology
DDC:570 Life sciences; biology
610 Medicine & health
Language:English
Date:February 2007
Deposited On:18 Mar 2009 16:30
Last Modified:28 Nov 2013 03:03
Publisher:Chapman & Hall
ISSN:1073-9688
Publisher DOI:10.1080/10739680601131200
PubMed ID:17365666
Citations:Web of Science®. Times Cited: 6
Google Scholar™

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page