Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-14348

Tooyama, Y; Braband, H; Spingler, B; Abram, U; Alberto, R (2008). High-valent technetium complexes with the [(99)TcO(3)](+) core from in situ prepared mixed anhydrides of [(99)TcO(4)](-) and their reactivities. Inorganic Chemistry, 47(1):257-264.

[img] PDF - Registered users only
1MB

Abstract

The highly reactive mixed anhydrides [TcO3(OCOPh)] and [TcO3(OBF3)]- were synthesized by treatment of [TcO4]- with strong Lewis acids benzoyl chloride and BF3.OEt2. These mixed anhydrides, prepared in situ, were used as precursors for the synthesis of complexes containing the [TcO3]+ core. Subsequent reactions with bi- or tridentate ligands resulted in new complexes comprised of the [TcO3]+ core. As examples with bidentate ligands, the classical complexes [TcO3Cl(bipy)] (1) (bipy = 2,2'-bipyridine) and [TcO3Cl(phen)] (2) (phen = 1,10-phenanthroline) have been prepared by this strategy and structurally characterized. The new compounds [TcO3(bpza)] (3) (bpza = di-1H-pyrazol-1-ylacetate), [TcO3(bpza*)] (4) (bpza* = bis(3,5-dimethyl-1H-pyrazol-1-yl)acetate), [TcO3(tpzm*)]+ (6) (tpzm* = 1,1,1-methanetriyltris(3,5-dimethyl-1H-pyrazole), and [ReO3(tpzm*)][ReO4] (7) are examples of complexes with tripod ligands. The complexes have been structurally characterized, and their 99Tc NMR spectra have been recorded. As a common feature, the X-ray structures show a distinct widening of the O-Tc-O angles, almost to a tetrahedral angle. With the perspective of radiopharmaceutical applications, water stability and reactivities toward alkenes are described.

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
DDC:540 Chemistry
Language:English
Date:January 2008
Deposited On:23 Feb 2009 13:50
Last Modified:27 Nov 2013 20:00
Publisher:American Chemical Society
ISSN:0020-1669
Publisher DOI:10.1021/ic701908q
PubMed ID:18076160
Citations:Web of Science®. Times Cited: 19
Google Scholar™
Scopus®. Citation Count: 18

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page