Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, 5.7.2016, 07:00-08:00

Maintenance work on ZORA and JDB on Tuesday, 5th July, 07h00-08h00. During this time there will be a brief unavailability for about 1 hour. Please be patient.

Wenger, R H; Marti, H H; Bauer, C; Gassmann, M (1998). Optimal erythropoietin expression in human hepatoma cell lines requires activation of multiple signalling pathways. International Journal of Molecular Medicine, 2(3):317-324.

Full text not available from this repository.


Hypoxia is thought to be a common precursor of coronary artery disease and malignant tumors, both diseases representing the leading causes of death in industrial nations. So far, investigations of oxygen-regulated erythropoietin (EPO) gene expression in the human hepatoma cell lines Hep3B and HepG2 allowed many important insights into the mechanisms of oxygen-sensing, signalling and regulation of an increasing number of oxygen-responsive genes. To differentiate the various signalling pathways involved in EPO production by these two cell lines, we examined several factors that positively influenced EPO expression. The results demonstrate a keen differential effect of cell density and oxygen concentration on EPO induction in Hep3B compared to HepG2 cells. Using optimized cell culture conditions, EPO production rates as high as 1 U EPO per 106 Hep3B cells in 24 h could be achieved. We also found a moderate but reproducible positive effect of CoCl2 on hypoxia-induced EPO expression in Hep3B but a negative CoCl2 effect on hypoxic induction in HepG2 cells. CoCl2 inhibited cell growth in a concentration-dependent manner. Interleukin-6 was synergistic with hypoxia on EPO induction in Hep3B as well as HepG2 cells, and dexamethasone enhanced this effect in Hep3B but not in HepG2 cells. The moderate CoCl2-dependent increase of EPO production observed in hypoxic Hep3B cells migh indicate that CoCl2 and hypoxia do not necessarily act via identical signalling pathways.


20 citations in Web of Science®
18 citations in Scopus®
Google Scholar™

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology
Dewey Decimal Classification:570 Life sciences; biology
Deposited On:11 Feb 2008 12:23
Last Modified:05 Apr 2016 12:18
Publisher:D.A. Spandidos
PubMed ID:9855704

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page