UZH-Logo

Maintenance Infos

Constitutively overexpressed erythropoietin reduces infarct size in a mouse model of permanent coronary artery ligation


Camici, G G; Stallmach, T; Hermann, M; Hassink, R; Doevendans, P; Grenacher, B; Hirschy, A; Vogel, J; Lüscher, T F; Ruschitzka, F; Gassmann, M (2007). Constitutively overexpressed erythropoietin reduces infarct size in a mouse model of permanent coronary artery ligation. Methods in Enzymology, 435:147-155.

Abstract

In view of the emerging role of recombinant human erythropoietin (rhEPO) as a novel therapeutical approach in myocardial ischemia, we performed the first two-way parallel comparison to test the effects of rhEPO pretreatment (1000 U/kg, 12h before surgery) versus EPO transgenic overexpression in a mouse model of myocardial infarction. Unlike EPO transgenic mice who doubled their hematocrit, rhEPO pretreated mice maintained an unaltered hematocrit, thereby offering the possibility to discern erythropoietic-dependent from erythropoietic-independent protective effects of EPO. Animals pretreated with rhEPO as well as EPO transgenic mice underwent permanent left anterior descending (LAD) coronary artery ligation. Resulting infarct size was determined 24h after LAD ligation by hematoxylin/eosin staining, and morphometrical analysis was performed by computerized planimetry. A large reduction in infarction size was observed in rhEPO-treated mice (-74% +/- 14.51; P = 0.0002) and an even more pronounced reduction in the EPO transgenic group (-87% +/- 6.31; P < 0.0001) when compared to wild-type controls. Moreover, while searching for novel early ischemic markers, we analyzed expression of hypoxia-sensitive Wilms' tumor suppressor gene (WT1) in infarcted hearts. We found that its expression correlated with the infarct area, thereby providing the first demonstration that WT1 is a useful early marker of myocardial infarction. This study demonstrates for the first time that, despite high hematocrit levels, endogenously overexpressed EPO provides protection against myocardial infarction in a murine model of permanent LAD ligation.

In view of the emerging role of recombinant human erythropoietin (rhEPO) as a novel therapeutical approach in myocardial ischemia, we performed the first two-way parallel comparison to test the effects of rhEPO pretreatment (1000 U/kg, 12h before surgery) versus EPO transgenic overexpression in a mouse model of myocardial infarction. Unlike EPO transgenic mice who doubled their hematocrit, rhEPO pretreated mice maintained an unaltered hematocrit, thereby offering the possibility to discern erythropoietic-dependent from erythropoietic-independent protective effects of EPO. Animals pretreated with rhEPO as well as EPO transgenic mice underwent permanent left anterior descending (LAD) coronary artery ligation. Resulting infarct size was determined 24h after LAD ligation by hematoxylin/eosin staining, and morphometrical analysis was performed by computerized planimetry. A large reduction in infarction size was observed in rhEPO-treated mice (-74% +/- 14.51; P = 0.0002) and an even more pronounced reduction in the EPO transgenic group (-87% +/- 6.31; P < 0.0001) when compared to wild-type controls. Moreover, while searching for novel early ischemic markers, we analyzed expression of hypoxia-sensitive Wilms' tumor suppressor gene (WT1) in infarcted hearts. We found that its expression correlated with the infarct area, thereby providing the first demonstration that WT1 is a useful early marker of myocardial infarction. This study demonstrates for the first time that, despite high hematocrit levels, endogenously overexpressed EPO provides protection against myocardial infarction in a murine model of permanent LAD ligation.

Citations

5 citations in Web of Science®
6 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 15 Mar 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology

04 Faculty of Medicine > Center for Integrative Human Physiology
05 Vetsuisse Faculty > Institute of Veterinary Physiology
04 Faculty of Medicine > University Hospital Zurich > Clinic for Cardiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2007
Deposited On:15 Mar 2009 20:24
Last Modified:05 Apr 2016 13:03
Publisher:Elsevier
ISSN:0076-6879
Publisher DOI:10.1016/S0076-6879(07)35008-8
PubMed ID:17998053
Permanent URL: http://doi.org/10.5167/uzh-14434

Download

[img]
Filetype: PDF - Registered users only
Size: 4MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations