Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-1444

Rolfs, A; Kvietikova, I; Gassmann, M; Wenger, R H (1997). Oxygen-regulated transferrin expression is mediated by hypoxia-inducible factor-1. Journal of Biological Chemistry:.-..

View at publisher


Transferrin (Tf) is a liver-derived iron transport protein whose plasma concentration increases following exposure to hypoxia. Here, we present a cell culture model capable of expressing Tf mRNA in an oxygen-dependent manner. A 4-kilobase pair Tf promoter/enhancer fragment as well as the 300-base pair liver-specific Tf enhancer alone conveyed hypoxia responsiveness to a heterologous reporter gene construct in hepatoma but not HeLa cells. Within this enhancer, a 32-base pair hypoxia-responsive element was identified, which contained two hypoxia-inducible factor-1 (HIF-1) binding sites (HBSs). Mutation analysis showed that both HBSs function as oxygen-regulated enhancers in Tf-expressing as well as in non-Tf-expressing cell lines. Mutation of both HBSs was necessary to completely abolish hypoxic reporter gene activation. Transient co-expression of the two HIF-1 subunits HIF-1alpha and aryl hydrocarbon receptor nuclear translocator (ARNT)/HIF-1beta resulted in enhanced reporter gene expression even under normoxic conditions. Overexpression of a dominant-negative ARNT/HIF-1beta mutant reduced hypoxic activation. DNA binding studies using nuclear extracts from the mouse hepatoma cell line Hepa1 and the ARNT/HIF-1beta-deficient subline Hepa1C4, as well as antibodies raised against HIF-1alpha and ARNT/HIF-1beta confirmed that HIF-1 binds the Tf HBSs. Mutation analysis and competition experiments suggested that the 5' HBS was more efficient in binding HIF-1 than the 3' HBS. Finally, hypoxic induction of endogenous Tf mRNA was abrogated in Hepa1C4 cells, confirming that HIF-1 confers oxygen regulation of Tf gene expression by binding to the two HBSs present in the Tf enhancer.


229 citations in Web of Science®
230 citations in Scopus®
Google Scholar™



91 downloads since deposited on 11 Feb 2008
32 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology
Dewey Decimal Classification:570 Life sciences; biology
Deposited On:11 Feb 2008 12:23
Last Modified:05 Apr 2016 12:18
Publisher:American Society for Biochemistry and Molecular Biology
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:10.1074/jbc.272.32.20055
PubMed ID:9242677

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page