UZH-Logo

Heart beats brain: the problem of detecting alpha waves by neuronal current imaging in joint EEG-MRI experiments


Mandelkow, H; Halder, P; Brandeis, D; Soellinger, M; de Zanche, N; Luechinger, R; Boesiger, P (2007). Heart beats brain: the problem of detecting alpha waves by neuronal current imaging in joint EEG-MRI experiments. NeuroImage, 37(1):149-163.

Abstract

It has been suggested recently that the influence of the neuro-magnetic field should make electrical brain activity directly detectable by MRI. To test this hypothesis, we performed combined EEG-MRI experiments which aim to localize the neuronal current sources of alpha waves (8-12 Hz), one of the most prominent EEG phenomena in humans. A detailed analysis of cross-spectral coherence between simultaneously recorded EEG and MRI time series revealed no sign of alpha waves. Instead the EEG-MRI approach was found to be hampered by artefacts due to cardiac pulsation, which extend into the frequency band of alpha waves. Separate brain displacement mapping experiments confirmed that not only the EEG but also the MRI signal is confounded by harmonics of the cardiac frequency even at 10 Hz and beyond. This well-known ballistocardiogram artefact cannot be avoided or eliminated entirely by available signal processing techniques. Therefore we must conclude that current EEG-MRI methodology based on correlation analysis lacks not only the sensitivity but also the specificity required for the reliable detection of alpha waves.

It has been suggested recently that the influence of the neuro-magnetic field should make electrical brain activity directly detectable by MRI. To test this hypothesis, we performed combined EEG-MRI experiments which aim to localize the neuronal current sources of alpha waves (8-12 Hz), one of the most prominent EEG phenomena in humans. A detailed analysis of cross-spectral coherence between simultaneously recorded EEG and MRI time series revealed no sign of alpha waves. Instead the EEG-MRI approach was found to be hampered by artefacts due to cardiac pulsation, which extend into the frequency band of alpha waves. Separate brain displacement mapping experiments confirmed that not only the EEG but also the MRI signal is confounded by harmonics of the cardiac frequency even at 10 Hz and beyond. This well-known ballistocardiogram artefact cannot be avoided or eliminated entirely by available signal processing techniques. Therefore we must conclude that current EEG-MRI methodology based on correlation analysis lacks not only the sensitivity but also the specificity required for the reliable detection of alpha waves.

Citations

16 citations in Web of Science®
19 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 19 Mar 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Child and Adolescent Psychiatry
04 Faculty of Medicine > Institute of Biomedical Engineering
04 Faculty of Medicine > Center for Integrative Human Physiology
04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:570 Life sciences; biology
170 Ethics
610 Medicine & health
Language:English
Date:1 August 2007
Deposited On:19 Mar 2009 14:27
Last Modified:05 Apr 2016 13:03
Publisher:Elsevier
ISSN:1053-8119
Publisher DOI:10.1016/j.neuroimage.2007.04.034
PubMed ID:17544703
Permanent URL: http://doi.org/10.5167/uzh-14452

Download

[img]
Filetype: PDF - Registered users only
Size: 5MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations