Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, 5.7.2016, 07:00-08:00

Maintenance work on ZORA and JDB on Tuesday, 5th July, 07h00-08h00. During this time there will be a brief unavailability for about 1 hour. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-157

Jabaudon, D; Scanziani, M; Gähwiler, B H; Gerber, U (2000). Acute decrease in net glutamate uptake during energy deprivation. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 97(10):5610-5615.

View at publisher


The extracellular glutamate concentration ([glu](o)) rises during cerebral ischemia, reaching levels capable of inducing delayed neuronal death. The mechanisms underlying this glutamate accumulation remain controversial. We used N-methyl-D-aspartate receptors on CA3 pyramidal neurons as a real-time, on-site, glutamate sensor to identify the source of glutamate release in an in vitro model of ischemia. Using glutamate and L-trans-pyrrolidine-2,4-dicarboxylic acid (tPDC) as substrates and DL-threo-beta-benzyloxyaspartate (TBOA) as an inhibitor of glutamate transporters, we demonstrate that energy deprivation decreases net glutamate uptake within 2-3 min and later promotes reverse glutamate transport. This process accounts for up to 50% of the glutamate accumulation during energy deprivation. Enhanced action potential-independent vesicular release also contributes to the increase in [glu](o), by approximately 50%, but only once glutamate uptake is inhibited. These results indicate that a significant rise in [glu](o) already occurs during the first minutes of energy deprivation and is the consequence of reduced uptake and increased vesicular and nonvesicular release of glutamate.


161 citations in Web of Science®
177 citations in Scopus®
Google Scholar™



54 downloads since deposited on 11 Feb 2008
7 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > Brain Research Institute
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Deposited On:11 Feb 2008 12:13
Last Modified:05 Apr 2016 12:12
Publisher:National Academy of Sciences
Publisher DOI:10.1073/pnas.97.10.5610
PubMed ID:10805815

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page