UZH-Logo

Maintenance Infos

Metabotropic glutamate receptors in vertebrate retina.


Gerber, U (2003). Metabotropic glutamate receptors in vertebrate retina. Documenta Ophthalmologica, 106(1):83-87.

Abstract

A striking feature in visual information processing is the fact that the primary signaling elements, the rods and the cones, are hyperpolarized and thus inhibited by light, the physiological stimulus. Light effectively shuts down neurotransmitter release by the photoreceptors onto the second-order retinal neurons. It has long been recognized that a sign-inverting synapse utilizing a specialized receptor is required to translate the inhibitory photoreceptor response into an excitatory signal suitable for transmission to the visual cortex. Although the first clues to the underlying mechanism were discovered in the 1970s, the actual receptor initiating the sign inversion in the ON bipolar cells was only identified in 1993. This receptor was found to belong to the family of metabotropic glutamate receptors (mGluRs) and is referred to as mGluR6. Subsequent studies have focused on the intracellular transduction pathway allowing mGluR6 to mediate a hyperpolarizing response to the neurotransmitter glutamate. The mGluR family of receptors comprises seven additional members, all of which are also found in retinal cells. Their function is to modulate rather than to transmit visual signals. In this brief overview, I describe the basic properties of mGluRs and summarize their roles in retinal signaling.

A striking feature in visual information processing is the fact that the primary signaling elements, the rods and the cones, are hyperpolarized and thus inhibited by light, the physiological stimulus. Light effectively shuts down neurotransmitter release by the photoreceptors onto the second-order retinal neurons. It has long been recognized that a sign-inverting synapse utilizing a specialized receptor is required to translate the inhibitory photoreceptor response into an excitatory signal suitable for transmission to the visual cortex. Although the first clues to the underlying mechanism were discovered in the 1970s, the actual receptor initiating the sign inversion in the ON bipolar cells was only identified in 1993. This receptor was found to belong to the family of metabotropic glutamate receptors (mGluRs) and is referred to as mGluR6. Subsequent studies have focused on the intracellular transduction pathway allowing mGluR6 to mediate a hyperpolarizing response to the neurotransmitter glutamate. The mGluR family of receptors comprises seven additional members, all of which are also found in retinal cells. Their function is to modulate rather than to transmit visual signals. In this brief overview, I describe the basic properties of mGluRs and summarize their roles in retinal signaling.

Citations

11 citations in Web of Science®
13 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > Brain Research Institute
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2003
Deposited On:11 Feb 2008 12:13
Last Modified:05 Apr 2016 12:12
Publisher:Springer
ISSN:0012-4486
Publisher DOI:10.1023/A:1022477203420
PubMed ID:12675489

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations