UZH-Logo

Maintenance Infos

Effect of water storage, thermocycling, the incorporation and site of placement of glass-fibers on the flexural strength of veneering composite.


Göhring, T N; Gallo, L; Lüthy, H (2005). Effect of water storage, thermocycling, the incorporation and site of placement of glass-fibers on the flexural strength of veneering composite. Dental Materials, 21(8):761-772.

Abstract

OBJECTIVES: To evaluate the effects of water storage, thermocycling, and the incorporation of glass-fibers, on the flexural strength of veneering composites. METHODS: Veneering composites with different fillers, matrices and polymerization methods (Belleglass Kerr Inc., Orange, CA, USA; Sculpture, Pentron Inc. Wallingford CT, USA; Sinfony, 3M Espe, Seefeld, Germany; SR Adoro LC and HP, Targis, Ivoclar Vivadent, Schaan, Liechtenstein), a glass-fiber framework material (Vectris Pontic VP, Ivoclar Vivadent) and a direct restorative composite control (Tetric Ceram, Ivoclar Vivadent) were selected. For the first part of the study, 30 bar specimens (25 x 2 x 2 mm3) per material were fabricated. Ten were stored for 24 h and 10 for 14 days in water at 37 degrees C. Ten were thermocycled (3000 x; 5-50-5 degrees C). Three-point bending tests (crosshead speed: 0.5 mm/min) were performed. For the second part of the study, all veneering materials were combined with a glass-fiber framework (VP). Sixty specimens were produced for each material (25 x 4 x 2 mm3) and treated as in the first part. Three-point bend tests were performed with the reinforcing glass-fiber framework either on the tension or the compression side. Data was evaluated by ANOVA and Weibull analysis. RESULTS: A decrease in flexural strength was observed after water storage or thermocycling for all veneering materials tested. None of the tested materials exhibited significant advantages compared to the control. The flexural strength of glass-fiber reinforced frameworks was ten times higher and not influenced by water storage or thermocycling. A significant reinforcing effect from glass fibers was observed when they were placed on the tension but not when placed on the compression side. SIGNIFICANCE: A glass-fiber framework on the tension side significantly improved the flexural strength of veneering composites. There was less deterioration due to water storage and thermocycling with the glass-fiber reinforced veneering composite compared to the non-reinforced materials.

OBJECTIVES: To evaluate the effects of water storage, thermocycling, and the incorporation of glass-fibers, on the flexural strength of veneering composites. METHODS: Veneering composites with different fillers, matrices and polymerization methods (Belleglass Kerr Inc., Orange, CA, USA; Sculpture, Pentron Inc. Wallingford CT, USA; Sinfony, 3M Espe, Seefeld, Germany; SR Adoro LC and HP, Targis, Ivoclar Vivadent, Schaan, Liechtenstein), a glass-fiber framework material (Vectris Pontic VP, Ivoclar Vivadent) and a direct restorative composite control (Tetric Ceram, Ivoclar Vivadent) were selected. For the first part of the study, 30 bar specimens (25 x 2 x 2 mm3) per material were fabricated. Ten were stored for 24 h and 10 for 14 days in water at 37 degrees C. Ten were thermocycled (3000 x; 5-50-5 degrees C). Three-point bending tests (crosshead speed: 0.5 mm/min) were performed. For the second part of the study, all veneering materials were combined with a glass-fiber framework (VP). Sixty specimens were produced for each material (25 x 4 x 2 mm3) and treated as in the first part. Three-point bend tests were performed with the reinforcing glass-fiber framework either on the tension or the compression side. Data was evaluated by ANOVA and Weibull analysis. RESULTS: A decrease in flexural strength was observed after water storage or thermocycling for all veneering materials tested. None of the tested materials exhibited significant advantages compared to the control. The flexural strength of glass-fiber reinforced frameworks was ten times higher and not influenced by water storage or thermocycling. A significant reinforcing effect from glass fibers was observed when they were placed on the tension but not when placed on the compression side. SIGNIFICANCE: A glass-fiber framework on the tension side significantly improved the flexural strength of veneering composites. There was less deterioration due to water storage and thermocycling with the glass-fiber reinforced veneering composite compared to the non-reinforced materials.

Citations

28 citations in Web of Science®
30 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Clinic for Preventive Dentistry, Periodontology and Cariology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:1 August 2005
Deposited On:11 Feb 2008 12:24
Last Modified:05 Apr 2016 12:19
Publisher:Elsevier
ISSN:0109-5641
Publisher DOI:10.1016/j.dental.2005.01.013
PubMed ID:15885765

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations