UZH-Logo

Maintenance Infos

Quantitative histological and ultrastructural features of opercula of normally erupting human teeth.


Verma, D K; Nair, P N R; Luder, H U (2005). Quantitative histological and ultrastructural features of opercula of normally erupting human teeth. Microscopy Research and Technique, 67(6):279-285.

Abstract

Tooth eruption across the mucosa in humans has been studied rarely, although there are disturbances of eruption that are attributed specifically to failure of the supraosseous eruptive migration. The aim of this study was to analyze the soft tissues covering normally erupting teeth so as to get an insight into the supraosseous phase of tooth eruption and to provide the basis for comparison with cases of eruption disturbances. Six opercula covering normally erupting permanent molars (primary opercula) and six of succedaneous teeth (secondary opercula) were surgically removed from 10 patients aged 7.5-17.5 years. Specimens were examined light and electron microscopically and analyzed morphometrically. All opercula contained strands and islands of odontogenic epithelium, prominent numbers of high endothelial venules, nerves, and mast cells. Nerves comprised normally structured, 1.5-3.5 microm thick myelinated (Adelta) and thinner unmyelinated (C) fibers. In primary opercula, the proportions of blood vessels and nerves were three- and sevenfold higher than the respective values for the secondary opercula. Furthermore, primary opercula contained multinucleated, fibroblast-like giant cells that were not observed in secondary opercula. As all teeth under investigation were erupting normally, neither the presence of the giant cells nor the atypical proportions of blood vessels and nerves appeared to be decisive in the eruption process. These conspicuous tissue components of opercula seem merely to accompany the eruptive tooth movement.

Tooth eruption across the mucosa in humans has been studied rarely, although there are disturbances of eruption that are attributed specifically to failure of the supraosseous eruptive migration. The aim of this study was to analyze the soft tissues covering normally erupting teeth so as to get an insight into the supraosseous phase of tooth eruption and to provide the basis for comparison with cases of eruption disturbances. Six opercula covering normally erupting permanent molars (primary opercula) and six of succedaneous teeth (secondary opercula) were surgically removed from 10 patients aged 7.5-17.5 years. Specimens were examined light and electron microscopically and analyzed morphometrically. All opercula contained strands and islands of odontogenic epithelium, prominent numbers of high endothelial venules, nerves, and mast cells. Nerves comprised normally structured, 1.5-3.5 microm thick myelinated (Adelta) and thinner unmyelinated (C) fibers. In primary opercula, the proportions of blood vessels and nerves were three- and sevenfold higher than the respective values for the secondary opercula. Furthermore, primary opercula contained multinucleated, fibroblast-like giant cells that were not observed in secondary opercula. As all teeth under investigation were erupting normally, neither the presence of the giant cells nor the atypical proportions of blood vessels and nerves appeared to be decisive in the eruption process. These conspicuous tissue components of opercula seem merely to accompany the eruptive tooth movement.

Citations

2 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Institute of Oral Biology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:15 August 2005
Deposited On:11 Feb 2008 12:24
Last Modified:05 Apr 2016 12:19
Publisher:Wiley-Blackwell
ISSN:1059-910X
Publisher DOI:10.1002/jemt.20208
PubMed ID:16173087

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations