UZH-Logo

Maintenance Infos

Endocytosis of the ASGP receptor H1 is reduced by mutation of tyrosine-5 but still occurs via coated pits.


Fuhrer, C; Geffen, I; Spiess, M (1991). Endocytosis of the ASGP receptor H1 is reduced by mutation of tyrosine-5 but still occurs via coated pits. Journal of Cell Biology, 114(3):423-431.

Abstract

The clustering of plasma membrane receptors in clathrin-coated pits depends on determinants within their cytoplasmic domains. In several cases, individual tyrosine residues were shown to be necessary for rapid internalization. We have mutated the single tyrosine at position 5 in the cytoplasmic domain of the major subunit H1 of the asialoglycoprotein receptor to alanine. Expressed in fibroblasts cells, the mutant protein was accumulated in the plasma membrane, and its rate of internalization was reduced by a factor of four. The residual rate of endocytosis, however, was still significantly higher than that of resident plasma membrane proteins. Upon acidification of the cytoplasm, which specifically inhibits the formation of clathrin-coated vesicles but not uptake of the fluid phase marker Lucifer yellow, residual endocytosis was blocked. By immunoelectron microscopy mutant H1 could be directly demonstrated in coated pits. The fraction of wild-type and mutant H1 present in coated pits as determined by immunogold localization correlated well with the respective rates of internalization. Thus, mutation of tyrosine-5 only partially inactivates recognition of H1 for incorporation into coated pits.

Abstract

The clustering of plasma membrane receptors in clathrin-coated pits depends on determinants within their cytoplasmic domains. In several cases, individual tyrosine residues were shown to be necessary for rapid internalization. We have mutated the single tyrosine at position 5 in the cytoplasmic domain of the major subunit H1 of the asialoglycoprotein receptor to alanine. Expressed in fibroblasts cells, the mutant protein was accumulated in the plasma membrane, and its rate of internalization was reduced by a factor of four. The residual rate of endocytosis, however, was still significantly higher than that of resident plasma membrane proteins. Upon acidification of the cytoplasm, which specifically inhibits the formation of clathrin-coated vesicles but not uptake of the fluid phase marker Lucifer yellow, residual endocytosis was blocked. By immunoelectron microscopy mutant H1 could be directly demonstrated in coated pits. The fraction of wild-type and mutant H1 present in coated pits as determined by immunogold localization correlated well with the respective rates of internalization. Thus, mutation of tyrosine-5 only partially inactivates recognition of H1 for incorporation into coated pits.

Citations

60 citations in Web of Science®
28 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

69 downloads since deposited on 11 Feb 2008
15 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > Brain Research Institute
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:1 August 1991
Deposited On:11 Feb 2008 12:13
Last Modified:05 Apr 2016 12:12
Publisher:Rockefeller University Press
ISSN:0021-9525
Publisher DOI:https://doi.org/10.1083/jcb.114.3.423
Related URLs:http://www.jcb.org/cgi/content/abstract/114/3/423
PubMed ID:1907285

Download

[img]
Preview
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations