UZH-Logo

Maintenance Infos

A method for the precision mass measurement of the stop quark at the international linear collider


Freitas, A; Milsténe, C; Schmitt, M; Sopczak, A (2008). A method for the precision mass measurement of the stop quark at the international linear collider. Journal of High Energy Physics, (9):076.

Abstract

Many supersymmetric models predict new particles within the reach of the next generation of colliders. For an understanding of the model structure and the mechanism(s) of symmetry breaking, it is important to know the masses of the new particles precisely. In this article the measurement of the mass of the scalar partner of the top quark (stop) at an e+e− collider is studied. A relatively light stop is motivated by attempts to explain electroweak baryogenesis and can play an important role in dark matter relic density. A method is presented which makes use of cross-section measurements near the pair-production threshold as well as at higher center-of-mass energies. It is shown that this method not only increases the statistical precision, but also greatly reduces the systematic uncertainties, which can be important. Numerical results are presented, based on a realistic event simulation, for two signal selection strategies: using conventional selection cuts, and using an Iterative Discriminant Analysis (IDA). Our studies indicate that a precision of Δmtilde t1 = 0.42 GeV can be achieved, representing a major improvement over previous studies. While the analysis of stops is particularly challenging due to the possibility of stop hadronization, the general procedure could be applied to the mass measurement of other particles as well. We also comment on the potential of the IDA to discover a stop quark in this scenario, and we revisit the accuracy of the theoretical predictions for the neutralino relic density.

Many supersymmetric models predict new particles within the reach of the next generation of colliders. For an understanding of the model structure and the mechanism(s) of symmetry breaking, it is important to know the masses of the new particles precisely. In this article the measurement of the mass of the scalar partner of the top quark (stop) at an e+e− collider is studied. A relatively light stop is motivated by attempts to explain electroweak baryogenesis and can play an important role in dark matter relic density. A method is presented which makes use of cross-section measurements near the pair-production threshold as well as at higher center-of-mass energies. It is shown that this method not only increases the statistical precision, but also greatly reduces the systematic uncertainties, which can be important. Numerical results are presented, based on a realistic event simulation, for two signal selection strategies: using conventional selection cuts, and using an Iterative Discriminant Analysis (IDA). Our studies indicate that a precision of Δmtilde t1 = 0.42 GeV can be achieved, representing a major improvement over previous studies. While the analysis of stops is particularly challenging due to the possibility of stop hadronization, the general procedure could be applied to the mass measurement of other particles as well. We also comment on the potential of the IDA to discover a stop quark in this scenario, and we revisit the accuracy of the theoretical predictions for the neutralino relic density.

Citations

2 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

107 downloads since deposited on 06 Mar 2009
38 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Language:English
Date:September 2008
Deposited On:06 Mar 2009 12:29
Last Modified:05 Apr 2016 13:06
Publisher:Institute of Physics Publishing
ISSN:1029-8479
Publisher DOI:10.1088/1126-6708/2008/09/076
Related URLs:http://arxiv.org/abs/0712.4010
Permanent URL: http://doi.org/10.5167/uzh-16495

Download

[img]
Preview
Filetype: PDF (Verlags-PDF)
Size: 1MB
View at publisher
[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 503kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations