UZH-Logo

B, D and K decays


Buchalla, G; Komatsubara, T K; Muheim, F; Silvestrini, L (2008). B, D and K decays. European Physical Journal C - Particles and Fields, 57(1-2):309-492.

Abstract

The present report documents the results of Working Group 2: B, D and K decays, of the workshop on Flavor in the Era of the LHC, held at CERN from November 2005 through March 2007.
With the advent of the LHC, we will be able to probe New Physics (NP) up to energy scales almost one order of magnitude larger than it has been possible with present accelerator facilities. While direct detection of new particles will be the main avenue to establish the presence of NP at the LHC, indirect searches will provide precious complementary information, since most probably it will not be possible to measure the full spectrum of new particles and their couplings through direct production. In particular, precision measurements and computations in the realm of flavor physics are expected to play a key role in constraining the unknown parameters of the Lagrangian of any NP model emerging from direct searches at the LHC.
The aim of Working Group 2 was twofold: on the one hand, to provide a coherent up-to-date picture of the status of flavor physics before the start of the LHC; on the other hand, to initiate activities on the path towards integrating information on NP from high-p T and flavor data.
This report is organized as follows: in Sect. 1, we give an overview of NP models, focusing on a few examples that have been discussed in some detail during the workshop, with a short description of the available computational tools for flavor observables in NP models. Section 2 contains a concise discussion of the main theoretical problem in flavor physics: the evaluation of the relevant hadronic matrix elements for weak decays. Section 3 contains a detailed discussion of NP effects in a set of flavor observables that we identified as “benchmark channels” for NP searches. The experimental prospects for flavor physics at future facilities are discussed in Sect. 4. Finally, Sect. 5 contains some assessments on the work done at the workshop and the prospects for future developments.

The present report documents the results of Working Group 2: B, D and K decays, of the workshop on Flavor in the Era of the LHC, held at CERN from November 2005 through March 2007.
With the advent of the LHC, we will be able to probe New Physics (NP) up to energy scales almost one order of magnitude larger than it has been possible with present accelerator facilities. While direct detection of new particles will be the main avenue to establish the presence of NP at the LHC, indirect searches will provide precious complementary information, since most probably it will not be possible to measure the full spectrum of new particles and their couplings through direct production. In particular, precision measurements and computations in the realm of flavor physics are expected to play a key role in constraining the unknown parameters of the Lagrangian of any NP model emerging from direct searches at the LHC.
The aim of Working Group 2 was twofold: on the one hand, to provide a coherent up-to-date picture of the status of flavor physics before the start of the LHC; on the other hand, to initiate activities on the path towards integrating information on NP from high-p T and flavor data.
This report is organized as follows: in Sect. 1, we give an overview of NP models, focusing on a few examples that have been discussed in some detail during the workshop, with a short description of the available computational tools for flavor observables in NP models. Section 2 contains a concise discussion of the main theoretical problem in flavor physics: the evaluation of the relevant hadronic matrix elements for weak decays. Section 3 contains a detailed discussion of NP effects in a set of flavor observables that we identified as “benchmark channels” for NP searches. The experimental prospects for flavor physics at future facilities are discussed in Sect. 4. Finally, Sect. 5 contains some assessments on the work done at the workshop and the prospects for future developments.

Citations

121 citations in Web of Science®
59 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

105 downloads since deposited on 06 Mar 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Language:English
Date:September 2008
Deposited On:06 Mar 2009 13:25
Last Modified:05 Apr 2016 13:06
Publisher:Springer
ISSN:1434-6044
Publisher DOI:10.1140/epjc/s10052-008-0716-1
Related URLs:http://arxiv.org/abs/0801.1833
Permanent URL: http://doi.org/10.5167/uzh-16513

Download

[img]
Filetype: PDF (Verlags-PDF) - Registered users only
Size: 10MB
View at publisher
[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 6MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations