UZH-Logo

Maintenance Infos

Neural elements in dental pulp and dentin.


Nair, P N R (1995). Neural elements in dental pulp and dentin. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, 80(6):710-719.

Abstract

This article addresses the structural and quantitative aspects of human tooth innervation and briefly considers the functions and clinical relevance of tooth axons. The classification of peripheral axons, the pulpal and dentinal innervation, and the theories of dentin sensitivity are discussed. Quantitative studies on tooth innervation are also reviewed. Human premolars receive about 2300 axons at the root-apex of which about 13% are myelinated and 87% are nonmyelinated fibers. Most apical myelinated axons are fast-conducting A delta-fibers with their receptive fields located at the pulpal periphery and inner dentin. These fibers are probably activated by a hydrodynamic mechanism and conduct impulses that are perceived as a short well-localized sharp pain. Most C-fibers are slow-conducting fine sensory afferents with their receptive fields located in the pulp and transmit impulses that are experienced as dull poorly localized and lingering pain. In addition to the nociceptive alarm signaling, the intradental sensory axons may play a regulatory role in the maintenance and repair of the pulpodentinal complex.

This article addresses the structural and quantitative aspects of human tooth innervation and briefly considers the functions and clinical relevance of tooth axons. The classification of peripheral axons, the pulpal and dentinal innervation, and the theories of dentin sensitivity are discussed. Quantitative studies on tooth innervation are also reviewed. Human premolars receive about 2300 axons at the root-apex of which about 13% are myelinated and 87% are nonmyelinated fibers. Most apical myelinated axons are fast-conducting A delta-fibers with their receptive fields located at the pulpal periphery and inner dentin. These fibers are probably activated by a hydrodynamic mechanism and conduct impulses that are perceived as a short well-localized sharp pain. Most C-fibers are slow-conducting fine sensory afferents with their receptive fields located in the pulp and transmit impulses that are experienced as dull poorly localized and lingering pain. In addition to the nociceptive alarm signaling, the intradental sensory axons may play a regulatory role in the maintenance and repair of the pulpodentinal complex.

Citations

22 citations in Web of Science®
22 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

236 downloads since deposited on 11 Feb 2008
45 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Institute of Oral Biology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:1 December 1995
Deposited On:11 Feb 2008 12:24
Last Modified:05 Apr 2016 12:19
Publisher:Elsevier
ISSN:1079-2104
Publisher DOI:10.1016/S1079-2104(05)80256-2
PubMed ID:8680980
Permanent URL: http://doi.org/10.5167/uzh-1653

Download

[img]
Preview
Filetype: PDF
Size: 8MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations