UZH-Logo

Maintenance Infos

Mass modelling of dwarf spheroidal galaxies


Klimentowski, J; Łokas, E L; Kazantzidis, S; Prada, F; Mayer, L; Mamon, G A (2008). Mass modelling of dwarf spheroidal galaxies. Proceedings of the International Astronomical Union, 244:321-325.

Abstract

We study the origin and properties of unbound stars in the kinematic samples of dwarf spheroidal galaxies. For this purpose we have run a high resolution N-body simulation of a two-component dwarf galaxy orbiting in a Milky Way potential. We create mock kinematic data sets by observing the dwarf in different directions. When the dwarf is observed along the tidal tails the kinematic samples are strongly contaminated by unbound stars from the tails. However, most of the unbound stars can be removed by the method of interloper rejection proposed by den Hartog & Katgert. We model the velocity dispersion profiles of the cleaned-up kinematic samples using solutions of the Jeans equation. We show that even for such a strongly stripped dwarf the Jeans analysis, when applied to cleaned samples, allows us to reproduce the mass and mass-to-light ratio of the dwarf with accuracy typically better than 25%.

We study the origin and properties of unbound stars in the kinematic samples of dwarf spheroidal galaxies. For this purpose we have run a high resolution N-body simulation of a two-component dwarf galaxy orbiting in a Milky Way potential. We create mock kinematic data sets by observing the dwarf in different directions. When the dwarf is observed along the tidal tails the kinematic samples are strongly contaminated by unbound stars from the tails. However, most of the unbound stars can be removed by the method of interloper rejection proposed by den Hartog & Katgert. We model the velocity dispersion profiles of the cleaned-up kinematic samples using solutions of the Jeans equation. We show that even for such a strongly stripped dwarf the Jeans analysis, when applied to cleaned samples, allows us to reproduce the mass and mass-to-light ratio of the dwarf with accuracy typically better than 25%.

Altmetrics

Downloads

0 downloads since deposited on 10 Mar 2009
14 downloads since 12 months

Additional indexing

Item Type:Journal Article, not refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Language:English
Date:May 2008
Deposited On:10 Mar 2009 16:11
Last Modified:05 Apr 2016 13:06
Publisher:Cambridge University Press
ISSN:1743-9213
Additional Information:Copyright: Cambridge University Press
Publisher DOI:https://doi.org/10.1017/S1743921307014159
Permanent URL: https://doi.org/10.5167/uzh-16544

Download

[img]
Preview
Filetype: PDF (Verlags-PDF)
Size: 348kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations