Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-16554

Zemp, M; Moore, B; Stadel, J; Carollo, C M; Madau, P (2008). Multimass spherical structure models for N-body simulations. Monthly Notices of the Royal Astronomical Society, 386(3):1543-1556.

PDF (Accepted manuscript, Version 2)
View at publisher
Accepted Version
PDF (Accepted manuscript, Version 1)


We present a simple and efficient method to set up spherical structure models for N-body simulations with a multimass technique. This technique reduces by a substantial factor the computer run time needed in order to resolve a given scale as compared to single-mass models. It therefore allows to resolve smaller scales in N-body simulations for a given computer run time. Here, we present several models with an effective resolution of up to 1.68 × 109 particles within their virial radius which are stable over cosmologically relevant time-scales. As an application, we confirm the theoretical prediction by Dehnen that in mergers of collisionless structures like dark matter haloes always the cusp of the steepest progenitor is preserved. We model each merger progenitor with an effective number of particles of approximately 108 particles. We also find that in a core–core merger the central density approximately doubles whereas in the cusp–cusp case the central density only increases by approximately 50 per cent. This may suggest that the central regions of flat structures are better protected and get less energy input through the merger process.


24 citations in Web of Science®
23 citations in Scopus®
Google Scholar™



48 downloads since deposited on 10 Mar 2009
24 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Date:May 2008
Deposited On:10 Mar 2009 17:08
Last Modified:05 Apr 2016 13:06
Additional Information:The definitive version is available at www.blackwell-synergy.com
Publisher DOI:10.1111/j.1365-2966.2008.13126.x
Related URLs:http://arxiv.org/abs/0710.3189

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page