UZH-Logo

Maintenance Infos

Heavy metal mutagenicity: insights from bioinorganic model chemistry.


Müller, J; Sigel, R K O; Lippert, B (2000). Heavy metal mutagenicity: insights from bioinorganic model chemistry. Journal of Inorganic Biochemistry, 79(1-4):261-265.

Abstract

The mutagenicity of metal species may be the result of a direct interaction with the target molecule DNA. Possible scenarios leading to nucleobase mispairing are discussed, and selected examples are presented. They include changes in nucleobase selectivity as a consequence of alterations in acid-base properties of nucleobase atoms and groups involved in complementary H bond formation, guanine deprotonation, and stabilization of rare nucleobase tautomers by metal ions. Oxidative nucleobase damage brought about by metal species will not be considered.

The mutagenicity of metal species may be the result of a direct interaction with the target molecule DNA. Possible scenarios leading to nucleobase mispairing are discussed, and selected examples are presented. They include changes in nucleobase selectivity as a consequence of alterations in acid-base properties of nucleobase atoms and groups involved in complementary H bond formation, guanine deprotonation, and stabilization of rare nucleobase tautomers by metal ions. Oxidative nucleobase damage brought about by metal species will not be considered.

Citations

48 citations in Web of Science®
54 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:1 April 2000
Deposited On:11 Feb 2008 12:24
Last Modified:05 Apr 2016 12:20
Publisher:Elsevier
ISSN:0162-0134
Publisher DOI:10.1016/S0162-0134(99)00179-8
PubMed ID:10830876

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations