UZH-Logo

Maintenance Infos

Molecular approaches for characterization and use of natural disease resistance in wheat


Kaur, N; Street, K; Mackay, M; Yahiaoui, N; Keller, B (2008). Molecular approaches for characterization and use of natural disease resistance in wheat. European Journal of Plant Pathology, 121(3):387-397.

Abstract

Wheat production is threatened by a constantly changing population of pathogen species and races. Given the rapid ability of many pathogens to overcome genetic resistance, the identification and practical implementation of new sources of resistance is essential. Landraces and wild relatives of wheat have played an important role as genetic resources for the improvement of disease resistance. The use of molecular approaches, particularly molecular markers, has allowed better characterization of the genetic diversity in wheat germplasm. In addition, the molecular cloning of major resistance (R) genes has recently been achieved in the large, polyploid wheat genome. For the first time this allows the study and analysis of the genetic variability of wheat R loci at the molecular level and therefore, to screen for allelic variation at such loci in the gene pool. Thus, strategies such as allele mining and ecotilling are now possible for characterization of wheat disease resistance. Here, we discuss the approaches, resources and potential tools to characterize and utilize the naturally occurring resistance diversity in wheat. We also report a first step in allele mining, where we characterize the occurrence of known resistance alleles at the wheat Pm3 powdery mildew resistance locus in a set of 1,320 landraces assembled on the basis of eco-geographical criteria. From known Pm3 R alleles, only Pm3b was frequently identified (3% of the tested accessions). In the same set of landraces, we found a high frequency of a Pm3 haplotype carrying a susceptible allele of Pm3. This analysis allowed the identification of a set of resistant lines where new potentially functional alleles would be present. Newly identified resistance alleles will enrich the genetic basis of resistance in breeding programmes and contribute to wheat improvement.

Wheat production is threatened by a constantly changing population of pathogen species and races. Given the rapid ability of many pathogens to overcome genetic resistance, the identification and practical implementation of new sources of resistance is essential. Landraces and wild relatives of wheat have played an important role as genetic resources for the improvement of disease resistance. The use of molecular approaches, particularly molecular markers, has allowed better characterization of the genetic diversity in wheat germplasm. In addition, the molecular cloning of major resistance (R) genes has recently been achieved in the large, polyploid wheat genome. For the first time this allows the study and analysis of the genetic variability of wheat R loci at the molecular level and therefore, to screen for allelic variation at such loci in the gene pool. Thus, strategies such as allele mining and ecotilling are now possible for characterization of wheat disease resistance. Here, we discuss the approaches, resources and potential tools to characterize and utilize the naturally occurring resistance diversity in wheat. We also report a first step in allele mining, where we characterize the occurrence of known resistance alleles at the wheat Pm3 powdery mildew resistance locus in a set of 1,320 landraces assembled on the basis of eco-geographical criteria. From known Pm3 R alleles, only Pm3b was frequently identified (3% of the tested accessions). In the same set of landraces, we found a high frequency of a Pm3 haplotype carrying a susceptible allele of Pm3. This analysis allowed the identification of a set of resistant lines where new potentially functional alleles would be present. Newly identified resistance alleles will enrich the genetic basis of resistance in breeding programmes and contribute to wheat improvement.

Citations

27 citations in Web of Science®
34 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

118 downloads since deposited on 07 Mar 2009
30 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:2008
Deposited On:07 Mar 2009 21:08
Last Modified:05 Apr 2016 13:08
Publisher:Springer
ISSN:0929-1873
Publisher DOI:https://doi.org/10.1007/s10658-007-9252-3
Permanent URL: https://doi.org/10.5167/uzh-16957

Download

[img]
Preview
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations