UZH-Logo

Intermediate-mass black holes and ultraluminous X-ray sources in the Cartwheel ring galaxy


Mapelli, M; Moore, B; Giordano, L; Mayer, L; Colpi, M; Ripamonti, E; Callegari, S (2008). Intermediate-mass black holes and ultraluminous X-ray sources in the Cartwheel ring galaxy. Monthly Notices of the Royal Astronomical Society, 383(1):230-246.

Abstract

Chandra and XMM–Newton observations of the Cartwheel galaxy show ∼17 bright X-ray sources (≳5 × 1038 erg s−1) , all within the gas-rich outer ring. We explore the hypothesis that these X-ray sources are powered by intermediate-mass black holes (IMBHs) accreting gas or undergoing mass transfer from a stellar companion. To this purpose, we run N-body/smoothed particle hydrodynamics simulations of the galaxy interaction which might have led to the formation of Cartwheel, tracking the dynamical evolution of two different IMBH populations: halo and disc IMBHs. Halo IMBHs cannot account for the observed X-ray sources, as only a few of them cross the outer ring. Instead, more than half of the disc IMBHs are pulled in the outer ring as a consequence of the galaxy collision. However, also in the case of disc IMBHs, accretion from surrounding gas clouds cannot account for the high luminosities of the observed sources. Finally, more than 500 disc IMBHs are required to produce ≲15 X-ray sources via mass transfer from very young stellar companions. Such number of IMBHs is very large and implies extreme assumptions. Thus, the hypothesis that all the observed X-ray sources in Cartwheel are associated with IMBHs is hardly consistent with our simulations, even if it is still possible that IMBHs account for the few (≲1–5) brightest ultraluminous X-ray sources.

Chandra and XMM–Newton observations of the Cartwheel galaxy show ∼17 bright X-ray sources (≳5 × 1038 erg s−1) , all within the gas-rich outer ring. We explore the hypothesis that these X-ray sources are powered by intermediate-mass black holes (IMBHs) accreting gas or undergoing mass transfer from a stellar companion. To this purpose, we run N-body/smoothed particle hydrodynamics simulations of the galaxy interaction which might have led to the formation of Cartwheel, tracking the dynamical evolution of two different IMBH populations: halo and disc IMBHs. Halo IMBHs cannot account for the observed X-ray sources, as only a few of them cross the outer ring. Instead, more than half of the disc IMBHs are pulled in the outer ring as a consequence of the galaxy collision. However, also in the case of disc IMBHs, accretion from surrounding gas clouds cannot account for the high luminosities of the observed sources. Finally, more than 500 disc IMBHs are required to produce ≲15 X-ray sources via mass transfer from very young stellar companions. Such number of IMBHs is very large and implies extreme assumptions. Thus, the hypothesis that all the observed X-ray sources in Cartwheel are associated with IMBHs is hardly consistent with our simulations, even if it is still possible that IMBHs account for the few (≲1–5) brightest ultraluminous X-ray sources.

Citations

22 citations in Web of Science®
22 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

63 downloads since deposited on 10 Mar 2009
26 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Language:English
Date:January 2008
Deposited On:10 Mar 2009 19:23
Last Modified:05 Apr 2016 13:08
Publisher:Wiley-Blackwell
ISSN:0035-8711
Additional Information:The definitive version is available at www.blackwell-synergy.com
Publisher DOI:10.1111/j.1365-2966.2007.12534.x
Related URLs:http://arxiv.org/abs/0710.0780
Permanent URL: http://doi.org/10.5167/uzh-17015

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF (Accepted manuscript, Version 2)
Size: 1MB
View at publisher
[img]
Preview
Content: Accepted Version
Filetype: PDF (Accepted manuscript, Version 1)
Size: 634kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations