UZH-Logo

Maintenance Infos

Mechanistic changeover for the water substitution on fac-[(CO)3Re(H2O)3]+ revealed by high-pressure NMR.


Grundler, P V; Salignac, B; Cayemittes, S; Alberto, R; Merbach, A E (2004). Mechanistic changeover for the water substitution on fac-[(CO)3Re(H2O)3]+ revealed by high-pressure NMR. Inorganic Chemistry, 43(3):865-873.

Abstract

The complex formation in water between the stable tricarbonyltriaqua fac-[(CO)(3)Re(H(2)O)(3)](+) (1) complex and N- and S-donor ligands has been studied by high-pressure (1)H NMR. Rate and equilibrium constants for the formation of [(CO)(3)Re(Pyz)(H(2)O)(2)](+), [(CO)(3)(H(2)O)(2)Re(mu-Pyz)Re(H(2)O)(2)(CO)(3)](2+), [(CO)(3)Re(THT)(H(2)O)(2)](+), and [(CO)(3)Re(DMS)(n)()(H(2)O)(3-n)](+) (n = 1-3) (Pyz = pyrazine, THT = tetrahydrothiophene, DMS = dimethyl sulfide) have been determined and are in accord with previous results (Salignac, B.; Grundler, P. V.; Cayemittes, S.; Frey, U.; Scopelliti, R.; Merbach, A. E.; Hedinger, R.; Hegetschweiler, K.; Alberto, R.; Prinz, U.; Raabe, G.; Kölle, U.; Hall, S. Inorg. Chem. 2003, 42, 3516). The calculated interchange rate constant k(1)' (Eigen-Wilkins mechanism) increases from the hard O- and N-donors to the soft S-donors, as exemplified by the following series: TFA (trifluoroacetate) (k(1)' = 2.9 x 10(-3) s(-1)) < Br(-) < CH(3)CN < Pyz < THT < DMS < TU (thiourea) (k(1)' = 41.5 x 10(-3) s(-1)). On the other hand, values remain close to that of water exchange k(ex) on 1 (k(ex) = 6.3 x 10(-3) s(-1)). Thus, an I(d) mechanism was assigned, suggesting however the possibility of a slight deviation toward an associatively activated mechanism with the S-donor ligands. Activation volumes determined by high-pressure NMR, for Pyz as Delta V(++)(f,1) = +5.4 +/- 1.5, Delta V(++)(r,1) = +7.9 +/- 1.2 cm(3) mol(-)(1), for THT as Delta V(++)(f,1) = -6.6 +/- 1, Delta V(++)(r,1) = -6.2 +/- 1 cm(3) mol(-1), and for DMS as Delta V(++)(f,1) = -12 +/- 1, Delta V(++)(r,1) = -10 +/- 2 cm(3) mol(-1) revealed the ambivalent character of 1 toward water substitution. Hence, these findings are interpreted as a gradual changeover of the reaction mechanism from a dissociatively activated one (I(d)), with the hard O- and N-donor ligands, to an associatively activated one (I(a)), with the soft S-donor ligands.

The complex formation in water between the stable tricarbonyltriaqua fac-[(CO)(3)Re(H(2)O)(3)](+) (1) complex and N- and S-donor ligands has been studied by high-pressure (1)H NMR. Rate and equilibrium constants for the formation of [(CO)(3)Re(Pyz)(H(2)O)(2)](+), [(CO)(3)(H(2)O)(2)Re(mu-Pyz)Re(H(2)O)(2)(CO)(3)](2+), [(CO)(3)Re(THT)(H(2)O)(2)](+), and [(CO)(3)Re(DMS)(n)()(H(2)O)(3-n)](+) (n = 1-3) (Pyz = pyrazine, THT = tetrahydrothiophene, DMS = dimethyl sulfide) have been determined and are in accord with previous results (Salignac, B.; Grundler, P. V.; Cayemittes, S.; Frey, U.; Scopelliti, R.; Merbach, A. E.; Hedinger, R.; Hegetschweiler, K.; Alberto, R.; Prinz, U.; Raabe, G.; Kölle, U.; Hall, S. Inorg. Chem. 2003, 42, 3516). The calculated interchange rate constant k(1)' (Eigen-Wilkins mechanism) increases from the hard O- and N-donors to the soft S-donors, as exemplified by the following series: TFA (trifluoroacetate) (k(1)' = 2.9 x 10(-3) s(-1)) < Br(-) < CH(3)CN < Pyz < THT < DMS < TU (thiourea) (k(1)' = 41.5 x 10(-3) s(-1)). On the other hand, values remain close to that of water exchange k(ex) on 1 (k(ex) = 6.3 x 10(-3) s(-1)). Thus, an I(d) mechanism was assigned, suggesting however the possibility of a slight deviation toward an associatively activated mechanism with the S-donor ligands. Activation volumes determined by high-pressure NMR, for Pyz as Delta V(++)(f,1) = +5.4 +/- 1.5, Delta V(++)(r,1) = +7.9 +/- 1.2 cm(3) mol(-)(1), for THT as Delta V(++)(f,1) = -6.6 +/- 1, Delta V(++)(r,1) = -6.2 +/- 1 cm(3) mol(-1), and for DMS as Delta V(++)(f,1) = -12 +/- 1, Delta V(++)(r,1) = -10 +/- 2 cm(3) mol(-1) revealed the ambivalent character of 1 toward water substitution. Hence, these findings are interpreted as a gradual changeover of the reaction mechanism from a dissociatively activated one (I(d)), with the hard O- and N-donor ligands, to an associatively activated one (I(a)), with the soft S-donor ligands.

Citations

22 citations in Web of Science®
25 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:9 February 2004
Deposited On:11 Feb 2008 12:25
Last Modified:05 Apr 2016 12:20
Publisher:American Chemical Society
ISSN:0020-1669
Publisher DOI:10.1021/ic034969a
PubMed ID:14753806

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations