UZH-Logo

Maintenance Infos

Time-resolved analysis of fMRI signal changes using Brain Activation Movies


Windischberger, C; Cunnington, R; Lamm, C; Lanzenberger, R; Langenberger, H; Deecke, L; Bauer, H; Moser, E (2008). Time-resolved analysis of fMRI signal changes using Brain Activation Movies. Journal of Neuroscience Methods, 169(1):222-230.

Abstract

Conventional fMRI analyses assess the summary of temporal information in terms of the coefficients of temporal basis functions. Based on established finite impulse response (FIR) analysis methodology we show how spatiotemporal statistical parametric maps may be concatenated to form Brain Activation Movies (BAMs), dynamic activation maps representing the temporal evolution of brain activation throughout task performance. These BAMs enable comprehensive assessment of the dynamics in functional topology without restriction to predefined regions and without detailed information on the stimulus paradigm. We apply BAM visualization to two fMRI studies demonstrating the additional spatiotemporal information available compared to standard fMRI result presentation. Here we show that BAMs allow for unbiased data visualization providing dynamic activation maps without assumptions on the neural activity except reproducibility across trials. It may thus be useful in proceeding from static to dynamic brain mapping, widening the range of fMRI in neuroscience. In addition, BAMs might be helpful tools in visualizing the temporal evolution of activation in "real-time" for better and intuitive understanding of temporal processes in the human brain.

Conventional fMRI analyses assess the summary of temporal information in terms of the coefficients of temporal basis functions. Based on established finite impulse response (FIR) analysis methodology we show how spatiotemporal statistical parametric maps may be concatenated to form Brain Activation Movies (BAMs), dynamic activation maps representing the temporal evolution of brain activation throughout task performance. These BAMs enable comprehensive assessment of the dynamics in functional topology without restriction to predefined regions and without detailed information on the stimulus paradigm. We apply BAM visualization to two fMRI studies demonstrating the additional spatiotemporal information available compared to standard fMRI result presentation. Here we show that BAMs allow for unbiased data visualization providing dynamic activation maps without assumptions on the neural activity except reproducibility across trials. It may thus be useful in proceeding from static to dynamic brain mapping, widening the range of fMRI in neuroscience. In addition, BAMs might be helpful tools in visualizing the temporal evolution of activation in "real-time" for better and intuitive understanding of temporal processes in the human brain.

Citations

13 citations in Web of Science®
12 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 05 Mar 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Economics
Dewey Decimal Classification:330 Economics
Language:English
Date:March 2008
Deposited On:05 Mar 2009 15:12
Last Modified:05 Apr 2016 13:09
Publisher:Elsevier
ISSN:0165-0270
Publisher DOI:https://doi.org/10.1016/j.jneumeth.2007.11.033
PubMed ID:18207248
Permanent URL: https://doi.org/10.5167/uzh-17260

Download

[img]
Filetype: PDF (Original publication) - Registered users only
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations