UZH-Logo

Unprecedented ROMP activity of low-valent rhenium-nitrosyl complexes: Mechanistic evaluation of an electrophilic olefin metathesis system.


Frech, C M; Blacque, Olivier; Schmalle, H W; Berke, Heinz; Adlhart, C; Chen, Peter (2006). Unprecedented ROMP activity of low-valent rhenium-nitrosyl complexes: Mechanistic evaluation of an electrophilic olefin metathesis system. Chemistry - A European Journal, 12(12):3325-3338.

Abstract

The reaction of [Re(H)(NO)2(PR3)2] complexes (1 a: R = PCy3; 1 b: R = PiPr3) with [H(OEt2)2][BAr(F)4] ([BAr(F)4] = tetrakis{3,5-bis(trifluoromethyl)phenyl}borate) in benzene at room temperature gave the corresponding cations [Re(NO)2(PR3)2][BAr(F)4] (2 a and 2 b). The addition of phenyldiazomethane to benzene solutions of 2 a and 2 b afforded the moderately stable cationic rhenium(I)-benzylidene-dinitrosyl-bis(trialkyl)phosphine complexes 3 a and 3 b as [BAr(F)4]- salts in good yields. The complexes 2 a and 2 b catalyze the ring-opening metathesis polymerization (ROMP) of highly strained nonfunctionalized cyclic olefins to give polymers with relatively high polydispersity indices, high molecular weights and over 80 % Z configuration of the double bonds in the chain backbone. However, these complexes do not show metathesis activity with acyclic olefins. The benzylidene derivatives 3 a and 3 b are almost inactive in ROMP catalysis with norbornene and in olefin metathesis. NMR experiments gave the first hints of the initial formation of carbene complexes from [Re(NO)2(PR3)2][BAr(F)4] (2 a and 2 b) and norbornene. In a detailed mechanistic study ESI-MS/MS measurements provided further evidence that the carbene formation is initiated by a unique reaction sequence where the cleavage of the strained olefinic bond starts with phosphine migration forming a cyclic ylide-carbene complex, capable of undergoing metathesis with alternating rhenacyclobutane formation and cycloreversion reactions ("ylide" route). However, even at an early stage the ROMP propagation route is expected to merge into an "iminate" route by attack by the ylide function on one of the N(NO) atoms followed by phosphine oxide elimination. The formation of phosphine oxide was confirmed by NMR spectroscopy. The proposed mechanism is supported further by detailed DFT calculations.

The reaction of [Re(H)(NO)2(PR3)2] complexes (1 a: R = PCy3; 1 b: R = PiPr3) with [H(OEt2)2][BAr(F)4] ([BAr(F)4] = tetrakis{3,5-bis(trifluoromethyl)phenyl}borate) in benzene at room temperature gave the corresponding cations [Re(NO)2(PR3)2][BAr(F)4] (2 a and 2 b). The addition of phenyldiazomethane to benzene solutions of 2 a and 2 b afforded the moderately stable cationic rhenium(I)-benzylidene-dinitrosyl-bis(trialkyl)phosphine complexes 3 a and 3 b as [BAr(F)4]- salts in good yields. The complexes 2 a and 2 b catalyze the ring-opening metathesis polymerization (ROMP) of highly strained nonfunctionalized cyclic olefins to give polymers with relatively high polydispersity indices, high molecular weights and over 80 % Z configuration of the double bonds in the chain backbone. However, these complexes do not show metathesis activity with acyclic olefins. The benzylidene derivatives 3 a and 3 b are almost inactive in ROMP catalysis with norbornene and in olefin metathesis. NMR experiments gave the first hints of the initial formation of carbene complexes from [Re(NO)2(PR3)2][BAr(F)4] (2 a and 2 b) and norbornene. In a detailed mechanistic study ESI-MS/MS measurements provided further evidence that the carbene formation is initiated by a unique reaction sequence where the cleavage of the strained olefinic bond starts with phosphine migration forming a cyclic ylide-carbene complex, capable of undergoing metathesis with alternating rhenacyclobutane formation and cycloreversion reactions ("ylide" route). However, even at an early stage the ROMP propagation route is expected to merge into an "iminate" route by attack by the ylide function on one of the N(NO) atoms followed by phosphine oxide elimination. The formation of phosphine oxide was confirmed by NMR spectroscopy. The proposed mechanism is supported further by detailed DFT calculations.

Citations

24 citations in Web of Science®
27 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:12 April 2006
Deposited On:11 Feb 2008 12:25
Last Modified:05 Apr 2016 12:20
Publisher:Wiley-Blackwell
ISSN:0947-6539
Publisher DOI:10.1002/chem.200501025
PubMed ID:16456907

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations