UZH-Logo

Plasmid DNA- and messenger RNA-based anti-cancer vaccination


Weide, B; Garbe, C; Rammensee, H G; Pascolo, S (2008). Plasmid DNA- and messenger RNA-based anti-cancer vaccination. Immunology Letters, 115(1):33-42.

Abstract

Tumor cells (over-) express specific antigens which allow them to be recognized and destroyed by the immune system. Triggering anti-tumor immunity in cancer patients by specific vaccination is foreseen as a safe and versatile method to control cancer. As a source of antigen, whole tumor cells, nucleic acids, proteins or derived peptides have been used. This review focuses on the utilization of vaccines based on plasmid DNA (pDNA) and messenger RNA (mRNA) coding for tumor associated antigens. Both vectors (pDNA and mRNA) are grouped under the designation "minimal nucleic acid vector" or MNAV. The current knowledge on anti-tumor vaccination based on MNAV-encoded tumor antigens, methods of delivery, principles of production and optimization is discussed. Furthermore, an up-to-date summary of published clinical trials using MNAV for the vaccination against solid tumors is given. Recent preclinical and early phase clinical trials demonstrate promising synergies between vaccination and other treatments such as chemotherapy or non-specific immune enhancement regimens. Combining optimized MNAV formulations and parallel adjuvant treatments could allow to turn MNAV-based vaccines into efficient anti-tumor immunotherapies in humans.

Tumor cells (over-) express specific antigens which allow them to be recognized and destroyed by the immune system. Triggering anti-tumor immunity in cancer patients by specific vaccination is foreseen as a safe and versatile method to control cancer. As a source of antigen, whole tumor cells, nucleic acids, proteins or derived peptides have been used. This review focuses on the utilization of vaccines based on plasmid DNA (pDNA) and messenger RNA (mRNA) coding for tumor associated antigens. Both vectors (pDNA and mRNA) are grouped under the designation "minimal nucleic acid vector" or MNAV. The current knowledge on anti-tumor vaccination based on MNAV-encoded tumor antigens, methods of delivery, principles of production and optimization is discussed. Furthermore, an up-to-date summary of published clinical trials using MNAV for the vaccination against solid tumors is given. Recent preclinical and early phase clinical trials demonstrate promising synergies between vaccination and other treatments such as chemotherapy or non-specific immune enhancement regimens. Combining optimized MNAV formulations and parallel adjuvant treatments could allow to turn MNAV-based vaccines into efficient anti-tumor immunotherapies in humans.

Citations

54 citations in Web of Science®
61 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 05 Mar 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Oncology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:15 January 2008
Deposited On:05 Mar 2009 14:31
Last Modified:05 Apr 2016 13:10
Publisher:Elsevier
ISSN:0165-2478
Publisher DOI:10.1016/j.imlet.2007.09.012
PubMed ID:18006079
Permanent URL: http://doi.org/10.5167/uzh-17519

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations