UZH-Logo

Maintenance Infos

Disinhibition of neurite growth to repair the injured adult CNS: focusing on Nogo


Gonzenbach, R R; Schwab, M E (2008). Disinhibition of neurite growth to repair the injured adult CNS: focusing on Nogo. Cellular and Molecular Life Sciences, 65(1):161-176.

Abstract

Investigations into mechanisms that restrict the recovery of functions after an injury to the brain or the spinal cord have led to the discovery of specific neurite growth inhibitory factors in the adult central nervous system (CNS) of mammals. Blocking their growth-suppressive function resulted in disinhibition of axonal growth, i.e. growth of cultured neurons on inhibitory CNS tissue in vitro and regeneration of injured axons in vivo. The enhanced regenerative and compensatory fibre growth was often accompanied by a substantial improvement in the functional recovery after CNS injury. The first clinical studies to assess the therapeutic potential of compounds that neutralize growth inhibitors or interfere with their downstream signalling are currently in progress. This review discusses recent advances in the understanding of how the 'founder molecule' Nogo-A and other glial-derived growth inhibitors restrict the regeneration and repair of disrupted neuronal circuits, thus limiting the functional recovery after CNS injuries.

Investigations into mechanisms that restrict the recovery of functions after an injury to the brain or the spinal cord have led to the discovery of specific neurite growth inhibitory factors in the adult central nervous system (CNS) of mammals. Blocking their growth-suppressive function resulted in disinhibition of axonal growth, i.e. growth of cultured neurons on inhibitory CNS tissue in vitro and regeneration of injured axons in vivo. The enhanced regenerative and compensatory fibre growth was often accompanied by a substantial improvement in the functional recovery after CNS injury. The first clinical studies to assess the therapeutic potential of compounds that neutralize growth inhibitors or interfere with their downstream signalling are currently in progress. This review discusses recent advances in the understanding of how the 'founder molecule' Nogo-A and other glial-derived growth inhibitors restrict the regeneration and repair of disrupted neuronal circuits, thus limiting the functional recovery after CNS injuries.

Citations

83 citations in Web of Science®
94 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 06 Mar 2009
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > Brain Research Institute
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:January 2008
Deposited On:06 Mar 2009 12:17
Last Modified:04 May 2016 08:09
Publisher:Springer
ISSN:1420-682X
Additional Information:The original publication is available at www.springerlink.com
Publisher DOI:https://doi.org/10.1007/s00018-007-7170-3
PubMed ID:17975707
Permanent URL: https://doi.org/10.5167/uzh-17534

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations