UZH-Logo

Multifrequency frequency-domain spectrometer for tissue analysis


Spichtig, S; Hornung, R; Brown, D W; Haensse, D; Wolf, M (2009). Multifrequency frequency-domain spectrometer for tissue analysis. Review of Scientific Instruments, 80 (2):024301 .

Abstract

In this paper we describe the modification and assessment of a standard multidistance frequency-domain near infrared spectroscopy (NIRS) instrument to perform multifrequency frequency-domain NIRS measurements. The first aim of these modifications was to develop an instrument that enables measurement of small volumes of tissue such as the cervix, which is too small to be measured using a multidistance approach. The second aim was to enhance the spectral resolution to be able to determine the absolute concentrations of oxy-, deoxy- and total hemoglobin, water, and lipids. The third aim was to determine the accuracy and error of measurement of this novel instrument in both in vitro and in vivo environments. The modifications include two frequency synthesizers with variable, freely adjustable frequency, broadband high-frequency amplifiers, the development of a novel avalanche photodiode (APD) detector and demodulation circuit, additional laser diodes with additional wavelengths, and a respective graphic user interface to analyze the measurements. To test the instrument and algorithm, phantoms with optical properties similar to those of biological tissue were measured and analyzed. The results show that the absorption coefficient can be determined with an error of <10%. The error of the scattering coefficient was <31%. Since the accuracy of the chromophore concentrations depends on the absorption coefficient and not on the scattering coefficient, the <10% error is the clinically relevant parameter. In addition, the new APD had similar accuracy as the standard photomultiplier tubes. To determine the accuracy of chromophore concentration measurements we employed liquid Intralipid® phantoms that contained 99% water, 1% lipid, and an increasing concentration of hemoglobin in steps of 0.010 mM. Water concentration was measured with an accuracy of 6.5% and hemoglobin concentration with an error of 0.0024 mM independent of the concentration. The measured lipid concentration was negative, which shows that the current setup is not suitable for measuring lipids. Measurements on the forearm confirmed reasonable values for water and hemoglobin concentrations, but again not for lipids. As an example of a future application, chromophore concentrations in the cervix were measured and comparable values to the forearm were found. In conclusion the modified instrument enables measurement of water concentration in addition to oxy- and deoxyhemoglobin concentrations with a single source-detector distance in small tissue samples. Future work will focus on resolving the lipid component.

In this paper we describe the modification and assessment of a standard multidistance frequency-domain near infrared spectroscopy (NIRS) instrument to perform multifrequency frequency-domain NIRS measurements. The first aim of these modifications was to develop an instrument that enables measurement of small volumes of tissue such as the cervix, which is too small to be measured using a multidistance approach. The second aim was to enhance the spectral resolution to be able to determine the absolute concentrations of oxy-, deoxy- and total hemoglobin, water, and lipids. The third aim was to determine the accuracy and error of measurement of this novel instrument in both in vitro and in vivo environments. The modifications include two frequency synthesizers with variable, freely adjustable frequency, broadband high-frequency amplifiers, the development of a novel avalanche photodiode (APD) detector and demodulation circuit, additional laser diodes with additional wavelengths, and a respective graphic user interface to analyze the measurements. To test the instrument and algorithm, phantoms with optical properties similar to those of biological tissue were measured and analyzed. The results show that the absorption coefficient can be determined with an error of <10%. The error of the scattering coefficient was <31%. Since the accuracy of the chromophore concentrations depends on the absorption coefficient and not on the scattering coefficient, the <10% error is the clinically relevant parameter. In addition, the new APD had similar accuracy as the standard photomultiplier tubes. To determine the accuracy of chromophore concentration measurements we employed liquid Intralipid® phantoms that contained 99% water, 1% lipid, and an increasing concentration of hemoglobin in steps of 0.010 mM. Water concentration was measured with an accuracy of 6.5% and hemoglobin concentration with an error of 0.0024 mM independent of the concentration. The measured lipid concentration was negative, which shows that the current setup is not suitable for measuring lipids. Measurements on the forearm confirmed reasonable values for water and hemoglobin concentrations, but again not for lipids. As an example of a future application, chromophore concentrations in the cervix were measured and comparable values to the forearm were found. In conclusion the modified instrument enables measurement of water concentration in addition to oxy- and deoxyhemoglobin concentrations with a single source-detector distance in small tissue samples. Future work will focus on resolving the lipid component.

Citations

6 citations in Web of Science®
9 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 30 Mar 2009
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neonatology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2009
Deposited On:30 Mar 2009 09:17
Last Modified:04 Jun 2016 07:43
Publisher:American Institute of Physics
ISSN:0034-6748
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:10.1063/1.3082024
Permanent URL: http://doi.org/10.5167/uzh-17583

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 183kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations