UZH-Logo

Feed-forward excitation of striatal neuron activity by frontal cortical activation of nitric oxide signaling in vivo


Ondracek, J M; Dec, A; Hoque, K E; Lim, S A; Rasouli, M; Indorkar, R P; Linardakis, J; Klika, B; Mukherji, S J; Burnazi, M; Threlfell, S; Sammut, S; West, A R (2008). Feed-forward excitation of striatal neuron activity by frontal cortical activation of nitric oxide signaling in vivo. European Journal of Neuroscience, 27(7):1739-1754.

Abstract

The gaseous neurotransmitter nitric oxide plays an important role in the modulation of corticostriatal synaptic transmission. This study examined the impact of frontal cortex stimulation on striatal nitric oxide efflux and neuron activity in urethane-anesthetized rats using amperometric microsensor and single-unit extracellular recordings, respectively. Systemic administration of the neuronal nitric oxide synthase inhibitor 7-nitroindazole decreased spontaneous spike activity without affecting activity evoked by single-pulse stimulation of the ipsilateral cortex. Train (30 Hz) stimulation of the contralateral frontal cortex transiently increased nitric oxide efflux in a robust and reproducible manner. Evoked nitric oxide efflux was attenuated by systemic administration of 7-nitroindazole and the non-selective nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester. Train stimulation of the contralateral cortex, in a manner identical to that used to evoke nitric oxide efflux, had variable effects on spike activity assessed during the train stimulation trial, but induced a short-term depression of cortically evoked activity in the first post-train stimulation trial. Interestingly, 7-nitroindazole potently decreased cortically evoked activity recorded during the train stimulation trial. Moreover, the short-term depression of spike activity induced by train stimulation was enhanced following pretreatment with 7-nitroindazole and attenuated after systemic administration of the dopamine D2 receptor antagonist eticlopride. These results demonstrate that robust activation of frontal cortical afferents in the intact animal activates a powerful nitric oxide-mediated feed-forward excitation which partially offsets concurrent D2 receptor-mediated short-term inhibitory influences on striatal neuron activity. Thus, nitric oxide signaling is likely to play an important role in the integration of corticostriatal sensorimotor information in striatal networks.

The gaseous neurotransmitter nitric oxide plays an important role in the modulation of corticostriatal synaptic transmission. This study examined the impact of frontal cortex stimulation on striatal nitric oxide efflux and neuron activity in urethane-anesthetized rats using amperometric microsensor and single-unit extracellular recordings, respectively. Systemic administration of the neuronal nitric oxide synthase inhibitor 7-nitroindazole decreased spontaneous spike activity without affecting activity evoked by single-pulse stimulation of the ipsilateral cortex. Train (30 Hz) stimulation of the contralateral frontal cortex transiently increased nitric oxide efflux in a robust and reproducible manner. Evoked nitric oxide efflux was attenuated by systemic administration of 7-nitroindazole and the non-selective nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester. Train stimulation of the contralateral cortex, in a manner identical to that used to evoke nitric oxide efflux, had variable effects on spike activity assessed during the train stimulation trial, but induced a short-term depression of cortically evoked activity in the first post-train stimulation trial. Interestingly, 7-nitroindazole potently decreased cortically evoked activity recorded during the train stimulation trial. Moreover, the short-term depression of spike activity induced by train stimulation was enhanced following pretreatment with 7-nitroindazole and attenuated after systemic administration of the dopamine D2 receptor antagonist eticlopride. These results demonstrate that robust activation of frontal cortical afferents in the intact animal activates a powerful nitric oxide-mediated feed-forward excitation which partially offsets concurrent D2 receptor-mediated short-term inhibitory influences on striatal neuron activity. Thus, nitric oxide signaling is likely to play an important role in the integration of corticostriatal sensorimotor information in striatal networks.

Citations

24 citations in Web of Science®
25 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 11 Mar 2009
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Neuroinformatics
Dewey Decimal Classification:570 Life sciences; biology
Uncontrolled Keywords:corticostriatal, neuronal nitric oxide synthase, nitrergic transmission, rat, short-term plasticity
Language:English
Date:April 2008
Deposited On:11 Mar 2009 07:55
Last Modified:05 Apr 2016 13:10
Publisher:Wiley-Blackwell
ISSN:0953-816X
Publisher DOI:10.1111/j.1460-9568.2008.06157.x
PubMed ID:18371082
Permanent URL: http://doi.org/10.5167/uzh-17628

Download

[img]
Filetype: PDF - Registered users only
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations