UZH-Logo

Maintenance Infos

Spike sorting with hidden Markov models


Herbst, J A; Gammeter, S; Ferrero, D; Hahnloser, R H R (2008). Spike sorting with hidden Markov models. Journal of Neuroscience Methods, 174(1):126-134.

Abstract

The ability to detect and sort overlapping spike waveforms in extracellular recordings is key to studies of neural coding at high spatial and temporal resolution. Most spike-sorting algorithms are based on initial spike detection (e.g. by a voltage threshold) and subsequent waveform classification. Much effort has been devoted to the clustering step, despite the fact that conservative spike detection is notoriously difficult in low signal-to-noise conditions and often entails many spike misses. Hidden Markov models (HMMs) can serve as generative models for continuous extracellular data records. These models naturally combine the spike detection and classification steps into a single computational procedure. They unify the advantages of independent component analysis (ICA) and overlap-search algorithms because they blindly perform source separation even in cases where several neurons are recorded on a single electrode. We apply HMMs to artificially generated data and to extracellular signals recorded with glass electrodes. We show that in comparison with state-of-art spike-sorting algorithms, HMM-based spike sorting exhibits a comparable number of false positive spike classifications but many fewer spike misses.

The ability to detect and sort overlapping spike waveforms in extracellular recordings is key to studies of neural coding at high spatial and temporal resolution. Most spike-sorting algorithms are based on initial spike detection (e.g. by a voltage threshold) and subsequent waveform classification. Much effort has been devoted to the clustering step, despite the fact that conservative spike detection is notoriously difficult in low signal-to-noise conditions and often entails many spike misses. Hidden Markov models (HMMs) can serve as generative models for continuous extracellular data records. These models naturally combine the spike detection and classification steps into a single computational procedure. They unify the advantages of independent component analysis (ICA) and overlap-search algorithms because they blindly perform source separation even in cases where several neurons are recorded on a single electrode. We apply HMMs to artificially generated data and to extracellular signals recorded with glass electrodes. We show that in comparison with state-of-art spike-sorting algorithms, HMM-based spike sorting exhibits a comparable number of false positive spike classifications but many fewer spike misses.

Citations

19 citations in Web of Science®
24 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 07 Mar 2009
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Neuroinformatics
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:September 2008
Deposited On:07 Mar 2009 19:37
Last Modified:05 Apr 2016 13:10
Publisher:Elsevier
ISSN:0165-0270
Publisher DOI:10.1016/j.jneumeth.2008.06.011
PubMed ID:18619490
Permanent URL: http://doi.org/10.5167/uzh-17641

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations