UZH-Logo

Maintenance Infos

The comprehensive native interactome of a fully functional tagged prion protein


Rutishauser, D; Mertz, K D; Moos, R; Brunner, E; Rülicke, T; Calella, A M; Aguzzi, A (2009). The comprehensive native interactome of a fully functional tagged prion protein. PLoS ONE, 4(2):e4446.

Abstract

The enumeration of the interaction partners of the cellular prion protein, PrP(C), may help clarifying its elusive molecular function. Here we added a carboxy proximal myc epitope tag to PrP(C). When expressed in transgenic mice, PrP(myc) carried a GPI anchor, was targeted to lipid rafts, and was glycosylated similarly to PrP(C). PrP(myc) antagonized the toxicity of truncated PrP, restored prion infectibility of PrP(C)-deficient mice, and was physically incorporated into PrP(Sc) aggregates, indicating that it possessed all functional characteristics of genuine PrP(C). We then immunopurified myc epitope-containing protein complexes from PrP(myc) transgenic mouse brains. Gentle differential elution with epitope-mimetic decapeptides, or a scrambled version thereof, yielded 96 specifically released proteins. Quantitative mass spectrometry with isotope-coded tags identified seven proteins which co-eluted equimolarly with PrP(C) and may represent component of a multiprotein complex. Selected PrP(C) interactors were validated using independent methods. Several of these proteins appear to exert functions in axomyelinic maintenance.

The enumeration of the interaction partners of the cellular prion protein, PrP(C), may help clarifying its elusive molecular function. Here we added a carboxy proximal myc epitope tag to PrP(C). When expressed in transgenic mice, PrP(myc) carried a GPI anchor, was targeted to lipid rafts, and was glycosylated similarly to PrP(C). PrP(myc) antagonized the toxicity of truncated PrP, restored prion infectibility of PrP(C)-deficient mice, and was physically incorporated into PrP(Sc) aggregates, indicating that it possessed all functional characteristics of genuine PrP(C). We then immunopurified myc epitope-containing protein complexes from PrP(myc) transgenic mouse brains. Gentle differential elution with epitope-mimetic decapeptides, or a scrambled version thereof, yielded 96 specifically released proteins. Quantitative mass spectrometry with isotope-coded tags identified seven proteins which co-eluted equimolarly with PrP(C) and may represent component of a multiprotein complex. Selected PrP(C) interactors were validated using independent methods. Several of these proteins appear to exert functions in axomyelinic maintenance.

Citations

40 citations in Web of Science®
38 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

103 downloads since deposited on 12 Mar 2009
19 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Functional Genomics Center Zurich
04 Faculty of Medicine > University Hospital Zurich > Institute of Neuropathology
08 University Research Priority Programs > Systems Biology / Functional Genomics
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2009
Deposited On:12 Mar 2009 09:52
Last Modified:04 Sep 2016 07:46
Publisher:Public Library of Science (PLoS)
ISSN:1932-6203
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pone.0004446
PubMed ID:19209230
Permanent URL: https://doi.org/10.5167/uzh-17675

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 3MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations