UZH-Logo

Maintenance Infos

Evaluation of a body mass index-adapted protocol for low-dose 64-MDCT coronary angiography with prospective ECG triggering


Tatsugami, F; Husmann, L; Herzog, B A; Burkhard, N; Valenta, I; Gaemperli, O; Kaufmann, P A (2009). Evaluation of a body mass index-adapted protocol for low-dose 64-MDCT coronary angiography with prospective ECG triggering. American Journal of Roentgenology, 192(3):635-638.

Abstract

OBJECTIVE: Because an increase in body mass index (weight in kilograms divided by height squared in meters) confers higher image noise at coronary CT angiography, we evaluated a body mass index-adapted scanning protocol for low-dose 64-MDCT coronary angiography with prospective ECG triggering. SUBJECTS AND METHODS: One hundred one consecutively registered patients underwent coronary CTA with prospective ECG triggering with a fixed contrast protocol (80 mL of iodixanol, 50-mL saline chaser, flow rate of 5 mL/s). Tube voltage (range, 100-120 kV) and current (range, 450-700 mA) were adapted to body mass index. Attenuation was measured, and contrast-to-noise ratio was calculated for the proximal right coronary artery and left main coronary artery. Image noise was determined for each patient as the SD of attenuation in the ascending aorta. RESULTS: Body mass index ranged from 18.2 to 38.8, and mean effective radiation dose from 1.0 to 3.2 mSv. There was no correlation between body mass index and image noise (r = 0.11, p = 0.284), supporting the validity of the body mass index-adapted scanning protocol. However, body mass index was inversely correlated with vessel attenuation (right coronary artery, r = -0.45, p < 0.001; left main coronary artery, r = -0.47, p < 0.001) and contrast-to-noise ratio (right coronary artery, r = -0.39, p < 0.001; left main coronary artery, r = -0.37, p < 0.001). CONCLUSION: Use of the proposed body mass index-adapted scanning parameters results in similar image noise regardless of body mass index. Increased bolus dilution due to larger blood volume may account for the decrease in contrast-to-noise ratio and vessel attenuation in patients with higher body mass index, but the contrast bolus was not adapted to body mass index in this study.

OBJECTIVE: Because an increase in body mass index (weight in kilograms divided by height squared in meters) confers higher image noise at coronary CT angiography, we evaluated a body mass index-adapted scanning protocol for low-dose 64-MDCT coronary angiography with prospective ECG triggering. SUBJECTS AND METHODS: One hundred one consecutively registered patients underwent coronary CTA with prospective ECG triggering with a fixed contrast protocol (80 mL of iodixanol, 50-mL saline chaser, flow rate of 5 mL/s). Tube voltage (range, 100-120 kV) and current (range, 450-700 mA) were adapted to body mass index. Attenuation was measured, and contrast-to-noise ratio was calculated for the proximal right coronary artery and left main coronary artery. Image noise was determined for each patient as the SD of attenuation in the ascending aorta. RESULTS: Body mass index ranged from 18.2 to 38.8, and mean effective radiation dose from 1.0 to 3.2 mSv. There was no correlation between body mass index and image noise (r = 0.11, p = 0.284), supporting the validity of the body mass index-adapted scanning protocol. However, body mass index was inversely correlated with vessel attenuation (right coronary artery, r = -0.45, p < 0.001; left main coronary artery, r = -0.47, p < 0.001) and contrast-to-noise ratio (right coronary artery, r = -0.39, p < 0.001; left main coronary artery, r = -0.37, p < 0.001). CONCLUSION: Use of the proposed body mass index-adapted scanning parameters results in similar image noise regardless of body mass index. Increased bolus dilution due to larger blood volume may account for the decrease in contrast-to-noise ratio and vessel attenuation in patients with higher body mass index, but the contrast bolus was not adapted to body mass index in this study.

Citations

55 citations in Web of Science®
59 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 12 Mar 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Nuclear Medicine
04 Faculty of Medicine > Center for Integrative Human Physiology
04 Faculty of Medicine > University Hospital Zurich > Clinic for Cardiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:March 2009
Deposited On:12 Mar 2009 16:37
Last Modified:05 Apr 2016 13:10
Publisher:American Roentgen Ray Society
ISSN:0361-803X
Publisher DOI:10.2214/AJR.08.1390
PubMed ID:19234258
Permanent URL: http://doi.org/10.5167/uzh-17758

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations