UZH-Logo

Maintenance Infos

Bulky Side Chains and Non-native Salt Bridges Slow down the Folding of a Cross-Linked Helical Peptide: A Combined Molecular Dynamics and Time-Resolved Infrared Spectroscopy Study


Paoli, B; Seeber, M; Backus, E H; Ihalainen, J A; Hamm, P; Caflisch, A (2009). Bulky Side Chains and Non-native Salt Bridges Slow down the Folding of a Cross-Linked Helical Peptide: A Combined Molecular Dynamics and Time-Resolved Infrared Spectroscopy Study. Journal of Physical Chemistry. B, 113(13):4435-4442.

Abstract

Multiple 4-mus molecular dynamics (MD) simulations are used to study the folding process of the cross-linked alpha-helical peptide Ac-EACAR(5)EAAAR(10)EAACR(15)Q-NH(2) (EAAAR peptide). The folding kinetics are single exponential at 330 K, while they are complex at 281 K with a clear deviation from single-exponential behavior, in agreement with time-resolved infrared (IR) spectroscopy measurements. Network analysis of the conformation space sampled by the MD simulations reveals four main folding channels which start from conformations with partially formed helical structure and non-native salt-bridges in a kinetically partitioned unfolded state. The independent folding pathways explain the comparable quality of models based on stretched exponential and multiexponential fitting of the kinetic traces at low temperature. The rearrangement of bulky side chains, and in particular their reorientation with respect to the cross-linker, makes the EAAAR peptide a slower folder at 281 K than a similar peptide devoid of the three glutamate side chains. On the basis of this simulation result, extracted from a total MD sampling of 1.0 ms, a mutant with additional bulky side chains (three methionines replacing alanines at positions 2, 7, and 12) is suggested to fold slower than the EAAAR peptide. This prediction is confirmed by time-resolved IR spectroscopy.

Abstract

Multiple 4-mus molecular dynamics (MD) simulations are used to study the folding process of the cross-linked alpha-helical peptide Ac-EACAR(5)EAAAR(10)EAACR(15)Q-NH(2) (EAAAR peptide). The folding kinetics are single exponential at 330 K, while they are complex at 281 K with a clear deviation from single-exponential behavior, in agreement with time-resolved infrared (IR) spectroscopy measurements. Network analysis of the conformation space sampled by the MD simulations reveals four main folding channels which start from conformations with partially formed helical structure and non-native salt-bridges in a kinetically partitioned unfolded state. The independent folding pathways explain the comparable quality of models based on stretched exponential and multiexponential fitting of the kinetic traces at low temperature. The rearrangement of bulky side chains, and in particular their reorientation with respect to the cross-linker, makes the EAAAR peptide a slower folder at 281 K than a similar peptide devoid of the three glutamate side chains. On the basis of this simulation result, extracted from a total MD sampling of 1.0 ms, a mutant with additional bulky side chains (three methionines replacing alanines at positions 2, 7, and 12) is suggested to fold slower than the EAAAR peptide. This prediction is confirmed by time-resolved IR spectroscopy.

Citations

11 citations in Web of Science®
10 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

4 downloads since deposited on 07 Apr 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry

07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:570 Life sciences; biology
540 Chemistry
Language:English
Date:2 April 2009
Deposited On:07 Apr 2009 09:39
Last Modified:05 Apr 2016 13:11
Publisher:American Chemical Society
ISSN:1520-5207
Additional Information:Full text article
Publisher DOI:https://doi.org/10.1021/jp810431s
PubMed ID:19256526

Download

[img]
Content: Accepted Version
Filetype: PDF - Registered users only
Size: 3MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations