UZH-Logo

Maintenance Infos

A strain-independent postnatal neurodegeneration in mice lacking the EGF receptor.


Sibilia, M; Steinbach, J P; Stingl, L; Aguzzi, A; Wagner, E F (1998). A strain-independent postnatal neurodegeneration in mice lacking the EGF receptor. EMBO Journal, 17(3):719-731.

Abstract

Mice lacking the epidermal growth factor receptor (EGFR) exhibit strain-dependent phenotypes ranging from placental to postnatal skin, lung and brain defects. After birth, all mutant mice develop a progressive neurodegeneration in the frontal cortex, olfactory bulb and thalamus, characterized by massive apoptosis and upregulation of c-fos. These defects occur in a strain-independent manner, since neither rescue of the placental phenotype by aggregation of diploid 129/Sv EGFR mutant and tetraploid wild-type embryos, nor promotion of lung maturation by transplacental dexamethasone administration alters the course of neurodegeneration. VEGF is not induced during the degenerative process, excluding hypoxia and ischemia as causes of cell death. A migratory disorder is detected in the hippocampus with nests of ectopic neurons, which are also apoptotic. Cerebral cortices from EGFR mutants contain lower numbers of GFAP positive astrocytes, which display reduced proliferation in vitro. Since EGFR is expressed in the affected cell-types, these results define a specific function for EGFR in the proliferation and/or differentiation of astrocytes and in the survival of postmitotic neurons.

Mice lacking the epidermal growth factor receptor (EGFR) exhibit strain-dependent phenotypes ranging from placental to postnatal skin, lung and brain defects. After birth, all mutant mice develop a progressive neurodegeneration in the frontal cortex, olfactory bulb and thalamus, characterized by massive apoptosis and upregulation of c-fos. These defects occur in a strain-independent manner, since neither rescue of the placental phenotype by aggregation of diploid 129/Sv EGFR mutant and tetraploid wild-type embryos, nor promotion of lung maturation by transplacental dexamethasone administration alters the course of neurodegeneration. VEGF is not induced during the degenerative process, excluding hypoxia and ischemia as causes of cell death. A migratory disorder is detected in the hippocampus with nests of ectopic neurons, which are also apoptotic. Cerebral cortices from EGFR mutants contain lower numbers of GFAP positive astrocytes, which display reduced proliferation in vitro. Since EGFR is expressed in the affected cell-types, these results define a specific function for EGFR in the proliferation and/or differentiation of astrocytes and in the survival of postmitotic neurons.

Citations

209 citations in Web of Science®
216 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Neuropathology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:1998
Deposited On:11 Feb 2008 12:25
Last Modified:05 Apr 2016 12:20
Publisher:Nature Publishing Group
ISSN:0261-4189
Publisher DOI:10.1093/emboj/17.3.719
PubMed ID:9450997

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations