Maintenance Infos

Global wellposedness of KdV in H−1(T,R)

Kappeler, T; Topalov, P (2006). Global wellposedness of KdV in H−1(T,R). Duke Mathematical Journal, 135(2):327-360.


By the inverse method we show that the Korteweg–de Vries equation (KdV) ∂tv(x,t)=-∂x3v(x,t)+6v(x,t)∂xv(x,t)x∈T,t∈R)Hβ(T,R)β≥−1.

By the inverse method we show that the Korteweg–de Vries equation (KdV) ∂tv(x,t)=-∂x3v(x,t)+6v(x,t)∂xv(x,t)x∈T,t∈R)Hβ(T,R)β≥−1.


70 citations in Web of Science®
63 citations in Scopus®
Google Scholar™


Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Deposited On:10 Apr 2009 08:38
Last Modified:05 Apr 2016 13:11
Publisher:Duke University Press
Publisher DOI:
Related URLs:


Full text not available from this repository.View at publisher


TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations