UZH-Logo

Maintenance Infos

Loss of power output and laser fibre degradation during 120 watt lithium-triborate HPS laser vaporisation of the prostate


Hermanns, T; Sulser, T; Hefermehl, L; Strebel, D; Michel, M S; Müntener, M; Meier, A H; Seifert, H H (2009). Loss of power output and laser fibre degradation during 120 watt lithium-triborate HPS laser vaporisation of the prostate. In: SPIE Photonics West 2009, San Jose, California, USA, 24 January 2009 - 29 January 2009.

Abstract

It has recently been shown that laser fibre deterioration leads to a significant decrease of power output during 80 W potassium titanyl phosphate (KTP) laser vaporisation (LV) of the prostate. This decrease results in inefficient vaporisation especially towards the end of the procedure. For the new 120 W lithium-triborate (LBO) High Performance System (HPS) laser not only higher power but also changes in beam characteristics and improved fibre quality have been advertised. However, high laser power has been identified as a risk factor for laser fibre degradation. Between July and September 2008 25 laser fibres were investigated during routine 120 W LBO-LV in 20 consecutive patients. Laser beam power was measured at baseline and after the application of every 25 kJ during the LV procedure. Postoperatively, the surgeon subjectively rated the performance of the respective fibre on a scale from 1 to 4 (1 indicating perfect and 4 insufficient performance). Additionally, microscopic examination of the fibre tip was performed. Median energy applied was 212 kJ. Changes of power output were similar for all fibres. Typically, a steep decrease of power output within the first 50 kJ was followed by a continuous mild decrease until the end of the procedure. After the application of 50 kJ the median power output was 63% (58-73% interquartile range) of the baseline value. The median power output at the end of the 275 kJ-lifespan of the fibres was 42% (40-47%). The median surgeons' rating of the overall performance of the laser fibres was 2 and the median estimated final decrease of power output 60%. Some degree of degradation at the emission window was microscopically detectable in all cases after the procedure. However, even after the application of 275 kJ, these structural changes were only moderate. Minor degradation of the laser fibre was associated with a significant decrease of power output during 120 W LBO-LV. However, following an early, steep decrease, power output remained relatively constant on a medium level for the rest of the fibre's lifespan. The subjective rating by the surgeons is in accordance with these findings. Improved properties of the LBO laser and enhanced fibre quality resulted in an only moderate decrease of power output which allowed for a consistently effective performance.

It has recently been shown that laser fibre deterioration leads to a significant decrease of power output during 80 W potassium titanyl phosphate (KTP) laser vaporisation (LV) of the prostate. This decrease results in inefficient vaporisation especially towards the end of the procedure. For the new 120 W lithium-triborate (LBO) High Performance System (HPS) laser not only higher power but also changes in beam characteristics and improved fibre quality have been advertised. However, high laser power has been identified as a risk factor for laser fibre degradation. Between July and September 2008 25 laser fibres were investigated during routine 120 W LBO-LV in 20 consecutive patients. Laser beam power was measured at baseline and after the application of every 25 kJ during the LV procedure. Postoperatively, the surgeon subjectively rated the performance of the respective fibre on a scale from 1 to 4 (1 indicating perfect and 4 insufficient performance). Additionally, microscopic examination of the fibre tip was performed. Median energy applied was 212 kJ. Changes of power output were similar for all fibres. Typically, a steep decrease of power output within the first 50 kJ was followed by a continuous mild decrease until the end of the procedure. After the application of 50 kJ the median power output was 63% (58-73% interquartile range) of the baseline value. The median power output at the end of the 275 kJ-lifespan of the fibres was 42% (40-47%). The median surgeons' rating of the overall performance of the laser fibres was 2 and the median estimated final decrease of power output 60%. Some degree of degradation at the emission window was microscopically detectable in all cases after the procedure. However, even after the application of 275 kJ, these structural changes were only moderate. Minor degradation of the laser fibre was associated with a significant decrease of power output during 120 W LBO-LV. However, following an early, steep decrease, power output remained relatively constant on a medium level for the rest of the fibre's lifespan. The subjective rating by the surgeons is in accordance with these findings. Improved properties of the LBO laser and enhanced fibre quality resulted in an only moderate decrease of power output which allowed for a consistently effective performance.

Citations

1 citation in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

4 downloads since deposited on 08 Apr 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Conference or Workshop Item (Speech), refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Urological Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Event End Date:29 January 2009
Deposited On:08 Apr 2009 13:28
Last Modified:05 Apr 2016 13:12
Publisher DOI:https://doi.org/10.1117/12.809751
Official URL:http://dx.doi.org/10.1117/12.809751
Related URLs:http://spie.org/Documents/ConferencesExhibitions/PW2009-Final-lr.pdf (Organisation)
Permanent URL: https://doi.org/10.5167/uzh-18128

Download

[img]
Filetype: PDF - Registered users only
Size: 671kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations