We study the arithmetic properties of projective varieties of almost minimal degree, that is of non-degenerate irreducible projective varieties whose degree exceeds the codimension by precisely $ 2$. We notably show, that such a variety $ X \subset {\mathbb{P}}^r$ is either arithmetically normal (and arithmetically Gorenstein) or a projection of a variety of minimal degree $ \tilde {X} \subset {\mathbb{P}}^{r + 1}$ from an appropriate point $ p \in {\mathbb{P}}^{r + 1} \setminus \tilde {X}$. We focus on the latter situation and study $ X$ by means of the projection $ \tilde {X} \rightarrow X$.

If $ X$ is not arithmetically Cohen-Macaulay, the homogeneous coordinate ring $ B$ of the projecting variety $ \tilde {X}$ is the endomorphism ring of the canonical module $ K(A)$ of the homogeneous coordinate ring $ A$ of $ X.$ If $ X$ is non-normal and is maximally Del Pezzo, that is, arithmetically Cohen-Macaulay but not arithmetically normal, $ B$ is just the graded integral closure of $ A.$ It turns out, that the geometry of the projection $ \tilde {X} \rightarrow X$ is governed by the arithmetic depth of $ X$ in any case.

We study, in particular, the case in which the projecting variety $ \tilde {X} \subset {\mathbb{P}}^{r + 1}$ is a (cone over a) rational normal scroll. In this case $ X$ is contained in a variety of minimal degree $ Y \subset {\mathbb{P}}^r$ such that $ \operatorname{codim}_Y(X) = 1$. We use this to approximate the Betti numbers of $ X$.

In addition, we present several examples to illustrate our results and we draw some of the links to Fujita's classification of polarized varieties of $ \Delta $-genus $ 1$.

Brodmann, M; Schenzel, P (2007). *Arithmetic properties of projective varieties of almost minimal degree.* Journal of Algebraic Geometry, 16(2):347-400.

## Abstract

We study the arithmetic properties of projective varieties of almost minimal degree, that is of non-degenerate irreducible projective varieties whose degree exceeds the codimension by precisely $ 2$. We notably show, that such a variety $ X \subset {\mathbb{P}}^r$ is either arithmetically normal (and arithmetically Gorenstein) or a projection of a variety of minimal degree $ \tilde {X} \subset {\mathbb{P}}^{r + 1}$ from an appropriate point $ p \in {\mathbb{P}}^{r + 1} \setminus \tilde {X}$. We focus on the latter situation and study $ X$ by means of the projection $ \tilde {X} \rightarrow X$.

If $ X$ is not arithmetically Cohen-Macaulay, the homogeneous coordinate ring $ B$ of the projecting variety $ \tilde {X}$ is the endomorphism ring of the canonical module $ K(A)$ of the homogeneous coordinate ring $ A$ of $ X.$ If $ X$ is non-normal and is maximally Del Pezzo, that is, arithmetically Cohen-Macaulay but not arithmetically normal, $ B$ is just the graded integral closure of $ A.$ It turns out, that the geometry of the projection $ \tilde {X} \rightarrow X$ is governed by the arithmetic depth of $ X$ in any case.

We study, in particular, the case in which the projecting variety $ \tilde {X} \subset {\mathbb{P}}^{r + 1}$ is a (cone over a) rational normal scroll. In this case $ X$ is contained in a variety of minimal degree $ Y \subset {\mathbb{P}}^r$ such that $ \operatorname{codim}_Y(X) = 1$. We use this to approximate the Betti numbers of $ X$.

In addition, we present several examples to illustrate our results and we draw some of the links to Fujita's classification of polarized varieties of $ \Delta $-genus $ 1$.

## Citations

## Downloads

## Additional indexing

Item Type: | Journal Article, refereed, original work |
---|---|

Communities & Collections: | 07 Faculty of Science > Institute of Mathematics |

Dewey Decimal Classification: | 510 Mathematics |

Language: | English |

Date: | 2007 |

Deposited On: | 09 Apr 2009 13:17 |

Last Modified: | 05 Apr 2016 13:12 |

Publisher: | University Press, Inc. |

ISSN: | 1056-3911 |

Free access at: | Related URL. An embargo period may apply. |

Official URL: | http://www.ams.org/distribution/jag/2007-16-02/S1056-3911-06-00461-9/home.html |

Related URLs: | http://arxiv.org/abs/math/0506277v2 http://www.ams.org/mathscinet-getitem?mr=2274517 |

## Download

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.

You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.