UZH-Logo

Calsyntenins mediate TGN exit of APP in a Kinesin-1-dependent manner


Ludwig, A; Blume, J; Diep, T M; Yuan, J; Mateos, J M; Leuthäuser, K; Steuble, M; Streit, P; Sonderegger, P (2009). Calsyntenins mediate TGN exit of APP in a Kinesin-1-dependent manner. Traffic, 10(5):572-589.

Abstract

Kinesin motors are required for the export of membranous cargo from the trans-Golgi network (TGN), yet information about how kinesins are recruited to forming transport intermediates is sparse. Here we show that the Kinesin-1 docking protein calsyntenin-1 localizes to the TGN in vivo and directly and specifically recruits Kinesin-1 to Golgi/TGN membranes as well as to dynamic post-Golgi carriers. Overexpression of various calsyntenin chimeras and kinesin light chain 1 (KLC1) at high levels caused the formation of aberrant membrane stacks at the ER or the Golgi, disrupted overall Golgi structure, and blocked exit of calsyntenin from the TGN. Intriguingly, this blockade of calsyntenin exit strongly and selectively impeded TGN exit of APP. Using live cell microscopy we found that calsyntenins exit the TGN in Kinesin-1-decorated tubular structures which may serve as carriers for calsyntenin-1-mediated post-TGN transport of APP. Abrogation of this pathway via virus-mediated knockdown of calsyntenin-1 expression in primary cultured neurons caused a marked elevation of APP C-terminal fragments. Together, these results indicate a role for calsyntenin-1 in Kinesin-1-dependent TGN exit and post-Golgi transport of APP-containing organelles and further suggest that distinct intracellular routes may exhibit different capacities for proteolytic processing of APP.

Kinesin motors are required for the export of membranous cargo from the trans-Golgi network (TGN), yet information about how kinesins are recruited to forming transport intermediates is sparse. Here we show that the Kinesin-1 docking protein calsyntenin-1 localizes to the TGN in vivo and directly and specifically recruits Kinesin-1 to Golgi/TGN membranes as well as to dynamic post-Golgi carriers. Overexpression of various calsyntenin chimeras and kinesin light chain 1 (KLC1) at high levels caused the formation of aberrant membrane stacks at the ER or the Golgi, disrupted overall Golgi structure, and blocked exit of calsyntenin from the TGN. Intriguingly, this blockade of calsyntenin exit strongly and selectively impeded TGN exit of APP. Using live cell microscopy we found that calsyntenins exit the TGN in Kinesin-1-decorated tubular structures which may serve as carriers for calsyntenin-1-mediated post-TGN transport of APP. Abrogation of this pathway via virus-mediated knockdown of calsyntenin-1 expression in primary cultured neurons caused a marked elevation of APP C-terminal fragments. Together, these results indicate a role for calsyntenin-1 in Kinesin-1-dependent TGN exit and post-Golgi transport of APP-containing organelles and further suggest that distinct intracellular routes may exhibit different capacities for proteolytic processing of APP.

Citations

26 citations in Web of Science®
25 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

9 downloads since deposited on 16 Apr 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:May 2009
Deposited On:16 Apr 2009 14:27
Last Modified:05 Apr 2016 13:12
Publisher:Wiley-Blackwell
ISSN:1398-9219
Additional Information:The definitive version is available at www.blackwell-synergy.com
Publisher DOI:10.1111/j.1600-0854.2009.00886.x
PubMed ID:19192245
Permanent URL: http://doi.org/10.5167/uzh-18250

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 37MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations