UZH-Logo

Distal axonopathy in peripheral nerves of PMP22-mutant mice.


Sancho, S; Magyar, J P; Aguzzi, A; Suter1, U (1999). Distal axonopathy in peripheral nerves of PMP22-mutant mice. Brain: A Journal of Neurology, 122(8):1563-1577.

Abstract

A partial duplication of chromosome 17 is associated with Charcot-Marie-Tooth disease type 1A (CMT1A), a demyelinating peripheral neuropathy that causes progressive distal muscle atrophy and sensory impairment. Trisomic expression of peripheral myelin protein 22 (PMP22) whose gene is contained within the duplicated region is considered to be responsible for the disease. By using recombinant gene technology in rodents, we had demonstrated previously that PMP22 is sensitive to gene dosage. Homozygous PMP22 knockout (PMP22(0/0)) mice and transgenic animals carrying additional copies of the PMP22 gene develop distinct peripheral polyneuropathies. We have now performed a detailed morphometrical analysis of the L3 roots, quadriceps and saphenous nerves of these PMP22-mutant mice to study whether the myelin and potential axonal deficits are evenly distributed. The L3 roots and the peripheral nerves were chosen as representatives of the proximal and distal segments of the peripheral nervous system. When the roots were compared with the peripheral nerves, myelin deficiencies appeared more severe at the radicular levels, in particular the ventral roots. Decreased numbers of large calibre axons were a prominent feature in the motor branches of both strains of PMP22-mutant mice, and these axonal deficits were more severe distally. Active axonal damage was only observed in the nerves of PMP22(0/0) mice. Despite the distinct effects on myelination and the Schwann cell phenotype that characterize the neuropathies of PMP22-mutant mice, both strains develop a distally accentuated axonopathy as a common disease mechanism which is likely to be responsible for the neurological deficits.

A partial duplication of chromosome 17 is associated with Charcot-Marie-Tooth disease type 1A (CMT1A), a demyelinating peripheral neuropathy that causes progressive distal muscle atrophy and sensory impairment. Trisomic expression of peripheral myelin protein 22 (PMP22) whose gene is contained within the duplicated region is considered to be responsible for the disease. By using recombinant gene technology in rodents, we had demonstrated previously that PMP22 is sensitive to gene dosage. Homozygous PMP22 knockout (PMP22(0/0)) mice and transgenic animals carrying additional copies of the PMP22 gene develop distinct peripheral polyneuropathies. We have now performed a detailed morphometrical analysis of the L3 roots, quadriceps and saphenous nerves of these PMP22-mutant mice to study whether the myelin and potential axonal deficits are evenly distributed. The L3 roots and the peripheral nerves were chosen as representatives of the proximal and distal segments of the peripheral nervous system. When the roots were compared with the peripheral nerves, myelin deficiencies appeared more severe at the radicular levels, in particular the ventral roots. Decreased numbers of large calibre axons were a prominent feature in the motor branches of both strains of PMP22-mutant mice, and these axonal deficits were more severe distally. Active axonal damage was only observed in the nerves of PMP22(0/0) mice. Despite the distinct effects on myelination and the Schwann cell phenotype that characterize the neuropathies of PMP22-mutant mice, both strains develop a distally accentuated axonopathy as a common disease mechanism which is likely to be responsible for the neurological deficits.

Citations

83 citations in Web of Science®
97 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

62 downloads since deposited on 11 Feb 2008
18 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Neuropathology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:1 August 1999
Deposited On:11 Feb 2008 12:25
Last Modified:05 Apr 2016 12:20
Publisher:Oxford University Press
ISSN:0006-8950
Publisher DOI:10.1093/brain/122.8.1563
Related URLs:http://brain.oxfordjournals.org/cgi/content/full/122/8/1563
PubMed ID:10430839
Permanent URL: http://doi.org/10.5167/uzh-1832

Download

[img]
Preview
Filetype: PDF
Size: 748kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations