Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-1836

Loup, F; Weinmann, O; Yonekawa, Y; Aguzzi, A; Wieser, H G; Fritschy, J M (1998). A highly sensitive immunofluorescence procedure for analyzing the subcellular distribution of GABA A receptor subunits in the human brain. Journal of Histochemistry and Cytochemistry, 46(10):1129-1139.

View at publisher


We designed a protocol to improve the immunohistochemical analysis of human brain structures, which overcomes the limited detection sensitivity, high background, and intense autofluorescence commonly associated with human tissue. This procedure was evaluated by using antibodies against major GABAA receptor subunits (alpha1, alpha2, alpha3, gamma2) in autopsy and surgical specimens. Tissue blocks were briefly fixed by immersion and pretreated with microwave irradiation in sodium citrate buffer. Immunoperoxidase staining revealed a marked enhancement of cell surface immunoreactivity and reduction of background in microwave-irradiated tissue, irrespective of its origin. For confocal laser scanning microscopy, immunofluorescence staining was optimized with the tyramide signal amplification (TSA) technique. This procedure not only dramatically increased the sensitivity for antigen detection but also totally suppressed autofluorescence, thus revealing the cellular and subcellular distribution of GABAA receptor subunits. A distinct neuron-specific expression pattern of the alpha-subunit variants was observed in cerebral cortex and hippocampal formation, along with widespread expression of the gamma2-subunit. Of particular interest was the prominent alpha2- and alpha3-subunit staining on the initial axon segment of pyramidal neurons. This protocol represents a major improvement for high-resolution studies of human brain tissue aimed at investigating morphological alterations underlying neurological diseases.


54 citations in Web of Science®
60 citations in Scopus®
Google Scholar™



125 downloads since deposited on 11 Feb 2008
36 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Neuropathology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Date:1 October 1998
Deposited On:11 Feb 2008 12:25
Last Modified:05 Apr 2016 12:20
Publisher:Sage Publications
Publisher DOI:10.1177/002215549804601005
Related URLs:http://www.jhc.org/cgi/content/abstract/46/10/1129
PubMed ID:9742069

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page