UZH-Logo

Maintenance Infos

Expression of lymphotoxin beta governs immunity at two distinct levels.


Junt, T; Tumanov, A V; Harris, N; Heikenwalder, M; Zeller, N; Kuprash, D V; Aguzzi, A; Ludewig, B; Nedospasov, S A; Zinkernagel, R M (2006). Expression of lymphotoxin beta governs immunity at two distinct levels. European Journal of Immunology, 36(8):2061-2075.

Abstract

Interaction of lymphotoxin alpha(1)beta(2) (LTalpha(1)beta(2)) with its receptor is key for the generation and maintenance of secondary lymphoid organ microstructure. We used mice conditionally deficient for LTbeta on different lymphocyte subsets to determine how the LTbeta-dependent lymphoid structure influences immune reactivity. All conditionally LTbeta-deficient mice mounted normal immune responses against vesicular stomatitis virus (VSV), and were protected against lymphocytic choriomeningitis virus (LCMV). In contrast, they exhibited reduced immune responses against non-replicating antigens. Completely LTbeta-deficient mice failed to retain VSV in the marginal zone and died from VSV infections, and they became virus carriers following infection with the non-cytopathic LCMV, which was correlated with defective virus replication in dendritic cells. It was ruled out that LTbeta expression on lymphocytes influenced their activation, homing capacity, or maturation. We therefore conclude that LTbeta expression influences immune reactivity at two distinct levels: (i) Expression of LTbeta on lymphocytes enhances the induction of immune responses against limiting amounts of antigen. (ii) Expression of LTbeta on non-lymphocytes governs antiviral immunity by enhancing antigen presentation on antigen-presenting cells. This prevents cytotoxic T lymphocytes exhaustion or death of the host by uncontrolled virus spread.

Interaction of lymphotoxin alpha(1)beta(2) (LTalpha(1)beta(2)) with its receptor is key for the generation and maintenance of secondary lymphoid organ microstructure. We used mice conditionally deficient for LTbeta on different lymphocyte subsets to determine how the LTbeta-dependent lymphoid structure influences immune reactivity. All conditionally LTbeta-deficient mice mounted normal immune responses against vesicular stomatitis virus (VSV), and were protected against lymphocytic choriomeningitis virus (LCMV). In contrast, they exhibited reduced immune responses against non-replicating antigens. Completely LTbeta-deficient mice failed to retain VSV in the marginal zone and died from VSV infections, and they became virus carriers following infection with the non-cytopathic LCMV, which was correlated with defective virus replication in dendritic cells. It was ruled out that LTbeta expression on lymphocytes influenced their activation, homing capacity, or maturation. We therefore conclude that LTbeta expression influences immune reactivity at two distinct levels: (i) Expression of LTbeta on lymphocytes enhances the induction of immune responses against limiting amounts of antigen. (ii) Expression of LTbeta on non-lymphocytes governs antiviral immunity by enhancing antigen presentation on antigen-presenting cells. This prevents cytotoxic T lymphocytes exhaustion or death of the host by uncontrolled virus spread.

Citations

28 citations in Web of Science®
27 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Neuropathology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:1 August 2006
Deposited On:11 Feb 2008 12:26
Last Modified:05 Apr 2016 12:20
Publisher:Wiley-Blackwell
ISSN:0014-2980
Publisher DOI:10.1002/eji.200626255
PubMed ID:16841297

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations