UZH-Logo

Maintenance Infos

Transgenic and gene disruption techniques in the study of neurocarcinogenesis.


Aguzzi, A; Brandner, S; Isenmann, S; Steinbach, J P; Sure, U (1995). Transgenic and gene disruption techniques in the study of neurocarcinogenesis. Glia, 15(3):348-364.

Abstract

Transgenic technologies have come of age, and the field of carcinogenesis has profited extensively from the availability of these methods. Both the inappropriate expression of dominant oncogenes in specific tissues and the ability to "knock out" tumor suppressor genes in mammalian organisms have enabled substantial advancements of our understanding of development and progression of the neoplastic phenotype. In the first part of this article, we review the most popular techniques for modification of the mammalian genome in vivo, i.e. microinjection of fertilized eggs, retrovirus-mediated gene transfer, and targeted gene deletion through homologous recombination. Subsequently, we attempt a critical evaluation of the available models of neurocarcinogenesis, and discuss their impact and future potential for the study of cancer in the nervous system.

Transgenic technologies have come of age, and the field of carcinogenesis has profited extensively from the availability of these methods. Both the inappropriate expression of dominant oncogenes in specific tissues and the ability to "knock out" tumor suppressor genes in mammalian organisms have enabled substantial advancements of our understanding of development and progression of the neoplastic phenotype. In the first part of this article, we review the most popular techniques for modification of the mammalian genome in vivo, i.e. microinjection of fertilized eggs, retrovirus-mediated gene transfer, and targeted gene deletion through homologous recombination. Subsequently, we attempt a critical evaluation of the available models of neurocarcinogenesis, and discuss their impact and future potential for the study of cancer in the nervous system.

Citations

15 citations in Web of Science®
17 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Neuropathology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:1 November 1995
Deposited On:11 Feb 2008 12:26
Last Modified:05 Apr 2016 12:20
Publisher:Wiley-Blackwell
ISSN:0894-1491
Publisher DOI:10.1002/glia.440150314
PubMed ID:8586469

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations