UZH-Logo

Maintenance Infos

Nonparametric maximum likelihood estimation of the structural mean of a sample of curves


Gervini, D; Gasser, T (2005). Nonparametric maximum likelihood estimation of the structural mean of a sample of curves. Biometrika, 92(4):801-820.

Abstract

A random sample of curves can be usually thought of as noisy realisations of a compound stochastic process X(t) = Z{W(t)}, where Z(t) produces random amplitude variation and W(t) produces random dynamic or phase variation. In most applications it is more important to estimate the so-called structural mean µ(t) = E{Z(t)} than the crosssectional mean E{X(t)}, but this estimation problem is difficult because the process Z(t) is not directly observable. In this paper we propose a nonparametric maximum likelihood estimator of µ(t). This estimator is shown to be {surd}n-consistent and asymptotically normal under the assumed model and robust to model misspecification. Simulations and a realdata example show that the proposed estimator is competitive with landmark registration, often considered the benchmark, and has the advantage of avoiding time-consuming and often infeasible individual landmark identification.

Abstract

A random sample of curves can be usually thought of as noisy realisations of a compound stochastic process X(t) = Z{W(t)}, where Z(t) produces random amplitude variation and W(t) produces random dynamic or phase variation. In most applications it is more important to estimate the so-called structural mean µ(t) = E{Z(t)} than the crosssectional mean E{X(t)}, but this estimation problem is difficult because the process Z(t) is not directly observable. In this paper we propose a nonparametric maximum likelihood estimator of µ(t). This estimator is shown to be {surd}n-consistent and asymptotically normal under the assumed model and robust to model misspecification. Simulations and a realdata example show that the proposed estimator is competitive with landmark registration, often considered the benchmark, and has the advantage of avoiding time-consuming and often infeasible individual landmark identification.

Citations

27 citations in Web of Science®
28 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 05 Jun 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Epidemiology, Biostatistics and Prevention Institute (EBPI)
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:December 2005
Deposited On:05 Jun 2009 15:49
Last Modified:05 Apr 2016 13:14
Publisher:Oxford University Press
ISSN:0006-3444
Publisher DOI:https://doi.org/10.1093/biomet/92.4.801
Official URL:http://biomet.oxfordjournals.org/cgi/reprint/92/4/801

Download

[img]
Filetype: PDF - Registered users only
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations