UZH-Logo

No superoxide dismutase activity of cellular prion protein in vivo.


Hutter, G; Heppner, F L; Aguzzi, A (2003). No superoxide dismutase activity of cellular prion protein in vivo. Biological Chemistry, 384(9):1279-1285.

Abstract

Prion diseases are characterized by the deposition of PrP(Sc), an abnormal form of the cellular prion protein PrP(C), which is encoded by the Prnp gene. PrP(C) is highly expressed on neurons and its function is unknown. Recombinant PrP(C) was claimed to possess superoxide dismutase (SOD) activity, and it was hypothesized that abrogation of this function may contribute to neurodegeneration in prion diseases. We tested this hypothesis in vivo by studying copper/zinc and manganese SOD activity in genetically defined crosses of mice lacking the Sod1 gene with mice lacking PrP(C), and with hemizygous or homozygous tga20 transgenic mice overexpressing various levels of PrP(C). We failed to detect any influence of the Prnp genotype and gene dosage on SOD1 or SOD2 activity in heart, spleen, brain, and synaptosome-enriched brain fractions. Control experiments included crosses of mice lacking or overexpressing PrPc with mice overexpressing human Cu2+/Zn2+-superoxide dismutase, and confirmed that SOD enzymatic activity correlated exclusively with the gene dosage of bona fide human or murine SOD. We conclude that PrP(C) in vivo does not discernibly contribute to total SOD activity and does not possess an intrinsic dismutase activity.

Prion diseases are characterized by the deposition of PrP(Sc), an abnormal form of the cellular prion protein PrP(C), which is encoded by the Prnp gene. PrP(C) is highly expressed on neurons and its function is unknown. Recombinant PrP(C) was claimed to possess superoxide dismutase (SOD) activity, and it was hypothesized that abrogation of this function may contribute to neurodegeneration in prion diseases. We tested this hypothesis in vivo by studying copper/zinc and manganese SOD activity in genetically defined crosses of mice lacking the Sod1 gene with mice lacking PrP(C), and with hemizygous or homozygous tga20 transgenic mice overexpressing various levels of PrP(C). We failed to detect any influence of the Prnp genotype and gene dosage on SOD1 or SOD2 activity in heart, spleen, brain, and synaptosome-enriched brain fractions. Control experiments included crosses of mice lacking or overexpressing PrPc with mice overexpressing human Cu2+/Zn2+-superoxide dismutase, and confirmed that SOD enzymatic activity correlated exclusively with the gene dosage of bona fide human or murine SOD. We conclude that PrP(C) in vivo does not discernibly contribute to total SOD activity and does not possess an intrinsic dismutase activity.

Citations

80 citations in Web of Science®
84 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Neuropathology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:1 September 2003
Deposited On:11 Feb 2008 12:26
Last Modified:05 Apr 2016 12:20
Publisher:De Gruyter
ISSN:1431-6730
Publisher DOI:10.1515/BC.2003.142
PubMed ID:14515989

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations